2.北控水务(中国)投资有限公司,北京 100102
1.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
2.Beijing Enterprises Water Group Limited, Beijing 100102, China
以红壤和褐土为研究对象,以多硫化物为还原剂,在实验室通过土壤柱实验模拟研究了原位氧化还原控制墙技术(in situ redox manipulation, ISRM)还原固定化修复受Cr(VI)污染的土壤-地下水的过程。结果表明:红壤柱和褐土柱经多硫化物硫化后均具有良好的还原能力,但还原能力存在一定的差异。向硫化处理后的红壤和褐土柱持续通入10 mg·L
Cr(Ⅵ),观察到土柱分别在38PV (pore volume, 孔隙体积)和22PV穿透,并最终在218PV和138PV左右,其完全丧失对Cr(Ⅵ)的还原能力。在土壤硫化过程及硫化土柱还原Cr(Ⅵ)的实验中观察到,系统的pH和氧化还原电位均发生了显著的变化。对实验结果进一步分析表明,经硫化处理后红壤和褐土的电子利用效率分别为23.0%和24.8%。基于柱实验研究结果,以多硫化物为还原剂采用ISRM技术修复受Cr(Ⅵ)污染的土壤-地下水系统是有效的。多硫化物的加入不仅可以有效去除孔隙水中的Cr(Ⅵ),而且通过在地下多孔介质中建立有效的还原区域,从而能够在一定时间内持续性地处理Cr(Ⅵ)。柱实验结果中所观察到的多硫化物实际添加量与理论值之间存在的偏差可能是由于土壤复杂性造成的。因此,采用ISRM技术现场修复应适当加入过量还原剂以保证实际修复效果。
Soil column tests were conducted to study the the remediation of chromate-contaminated groundwater with the reductive immobilization of in situ redox manipulation (ISRM) when polysulfide was chosen as the reductant and field-collected red soil and cinnamon were chosen as the packing material. The results indicated that both types of polysulfide-treated soils had good reductive properties to immobilize Cr(Ⅵ), although their reductive capacities varied to some extent. When 10 mg·L
Cr(Ⅵ) solution was continuously injected to the column packed with sulfidization treated red soil and cinnamon, the corresponding column breakthrough occurred at 38PV and 22PV, and their reductive capacities depleted at 218PV and 138PV, respectively. Significant changes in effluent pH and oxidation-reduction potential were observed in the soil sulfidization experiments and Cr(Ⅵ) reduction with sulfidization treated soil column. Further analysis indicated that the electronic utilization efficiencies of polysulfide-treated red and cinnamon soils were 23.0% and 24.8%, respectively. Based on column experiments, remediation of Cr(Ⅵ)-contaminated groundwater by ISRM with polysulfide reductant was an effective approach. Polysulfide addition can not only remove chromate in pore-water effectively, but also establish an effective reductive zone in porous media and perform a continuous field treatment of Cr(Ⅵ). The difference in dosages of polysulfide used in column tests and predicated by theory may arise from the complexity of soils. Thus, the actual remediation effect could be ensured by the application of field remediation with ISRM and reasonable addition of overdosed reductant.
.
Schematic diagrams of the column experiment setup and the structure of the soil-packed column
concentrations in outlet solutions with time
concentrations in the outlet solution with time
[1] | GUERTIN J, JACOBS J A, AVAKIAN C P, et al. Chromium(VI) Handbook[M]. First Edition. Florida: CRC Press, 2004. |
[2] | 刘磊, 王宇峰, 李慧, 等. 某铬渣污染场地不同粒径土壤中六价铬的分布特征及其淋洗修复工艺[J]. 杭州师范大学学报(自然科学版), 2019, 18(3): 256-260. |
[3] | 孟凡生. 中国铬渣污染场地土壤污染特征[J]. 环境污染与防治, 2016, 38(6): 50-53. |
[4] | 宋菁. 典型铬渣污染场地调查与修复技术筛选[D]. 青岛: 青岛理工大学, 2010. |
[5] | 徐成斌. 铬渣堆存区铬污染土壤特性的研究[J]. 安徽农业科学, 2010, 38(21): 11363-11364. |
[6] | 张红娣, 熊昊, 孙强国. 黄石市某化工厂周围环境铬污染现况调查研究[J]. 公共卫生与预防医学, 2009, 20(4): 78-79. |
[7] | LAN Y Q, DENG B L, KIM C, et al. Catalysis of elemental sulfur nanoparticles on chromium(VI) reduction by sulfide under anaerobic conditions[J]. Environmental Science & Technology, 2005, 39(7): 2087-2094. |
[8] | PALMER C D, WITTBRODT P R. Processes affecting the remediation of chromium-contaminated sites[J]. Environmental Health Perspectives, 1991, 92: 25-40. doi: 10.1289/ehp.919225 |
[9] | LANGLOIS C L, JAMES B R. Chromium oxidation-reduction chemistry at soil horizon interfaces defined by iron and manganese oxides[J]. Soil Science Society of America Journal, 2015, 79(5): 1329-1339. doi: 10.2136/sssaj2014.12.0476 |
[10] | RICHARD F C, BOURG A C M. Aqueous geochemistry of chromium: A review[J]. Water Research, 1991, 25(7): 807-816. doi: 10.1016/0043-1354(91)90160-R |
[11] | ZHONG J W, YIN W Z, LI Y T, et al. Column study of enhanced Cr(VI) removal and longevity by coupled abiotic and biotic processes using Fe0 and mixed anaerobic culture[J]. Water Research, 2017, 122: 536-544. doi: 10.1016/j.watres.2017.05.043 |
[12] | PETERSEN S W. Evaluation of amendments for mending the ISRM barrier: Project 33[R]. Department of Energy, U.S., 2004. |
[13] | FRUCHTER J. In-situ treatment of chromium-contaminated groundwater[J]. Environmental Science & Technology, 2002, 36(23): 464-472. |
[14] | FRUCHTER J S, COLE C R, WILLIAMS M D, et al. Creation of a subsurface permeable treatment zone for aqueous chromate contamination using in situ redox manipulation[J]. Groundwater Monitoring & Remediation, 2000, 20(2): 66-77. |
[15] | BOPARAI H K, COMFORT S, SHEA P J, et al. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments[J]. Chemosphere, 2008, 71(5): 933-941. doi: 10.1016/j.chemosphere.2007.11.001 |
[16] | 郑建中, 石美, 李娟, 等. 化学还原固定化土壤地下水中六价铬的研究进展[J]. 环境工程学报, 2015, 9(7): 3077-3085. |
[17] | MESSER A, STORCH P, PALMER D. In situ remediation of a chromium contaminated site using calcium polysulfide[J]. Southwest Hydrology, 2003, 2(5): 7. |
[18] | SHI M, LI J, LI X Y, et al. Reductive immobilization of hexavalent chromium by polysulfide-reduced lepidocrocite[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11920-11926. |
[19] | GRAHAM M C, FARMER J G, ANDERSON P, et al. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue[J]. Science of the Total Environment, 2006, 364(1/2/3): 32-44. |
[20] | 许超, 邢轶兰, 刘鹏, 等. 多硫化钙修复Cr(VI)污染土壤的原理与应用[J]. 环境工程, 2018, 36(7): 133-137. |
[21] | BEWLEY R J, CLARKE S. Field application of calcium polysulphide for ex situ treatment of soils contaminated with chromite ore processing residue[J]. Land Contamination Reclamation, 2010, 18(1): 1-12. doi: 10.2462/09670513.984 |
[22] | CHRYSOCHOOU M, FERREIRA D R, JOHNSTON C P. Calcium polysulfide treatment of Cr(VI)-contaminated soil[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 650-657. |
[23] | FOSS D L, CHARBONEAU B L. Groundwater remediation of hexavalent chromium along the columbia river at the Hanford site in Washington State, USA[C]//American Society of Mechanical Engineers. 14th International Conference on Environmental Remediation and Radioactive Waste Management Digital Collection, 2011: 483-492. |
[24] | KLEINJAN W E, DE KEIZER A, JANSSEN A J. Kinetics of the chemical oxidation of polysulfide anions in aqueous solution[J]. Water Research, 2005, 39(17): 4093-4100. doi: 10.1016/j.watres.2005.08.006 |
[25] | PETRE C F, LARACHI F. Capillary electrophoretic separation of inorganic sulfur-sulfide, polysulfides, and sulfur-oxygen species[J]. Journal of Separation Science, 2006, 29(1): 144-152. doi: 10.1002/jssc.200500265 |
[26] | FONSELIUS S, DYRSSEN D, YHLEN B. Methods of Seawater Analysis[M]. Third Edition. Germany: Wiley-VCH Verlag GmbH, Weinheim, 2007. |
[27] | 张淼, 李亚青, 王敏新. 重金属锌在一维黄土土柱中的运移规律研究[J]. 西北水资源与水工程, 1997, 8(2): 28-34. |
[28] | 王凯丽. 胶体作用下Zn/Cd在不同质地土壤中的运移实验及其数值模拟[D]. 青岛: 青岛大学, 2010. |
[29] | MYSTRIOTI C, XENIDIS A, PAPASSIOPI N. Reduction of hexavalent chromium with polyphenol-coated nano zero-valent iron: Column studies[J]. Desalination and Water Treatment, 2014, 56(5): 1162-1170. |
[30] | TANG S C N, YIN K, LO I M C. Column study of Cr(VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil[J]. Journal of Contaminant Hydrology, 2011, 125(1/2/3/4): 39-46. |
[31] | CLESCERI L S, GREENBERG A E, EATON A D. Standard Methods for the Examination of Water and Wastewater[M]. 20th Edition. Washington D C: American Public Health Association(APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), 1998. |
[32] | HELLIGE K, POLLOK K, LARESE-CASANOVA P, et al. Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces[J]. Geochimica et Cosmochimica Acta, 2012, 81: 69-81. doi: 10.1016/j.gca.2011.12.014 |
[33] | PEIFFER S, BEHRENDS T, HELLIGE K, et al. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration[J]. Chemical Geology, 2015, 400: 44-55. doi: 10.1016/j.chemgeo.2015.01.023 |