3.江苏省水处理技术与材料协同创新中心,苏州 215009
3.Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
膜生物反应器(MBR)已在污水处理领域得到广泛的应用,然而氮、磷难以达到排放要求。为了强化污染物去除效果,可将MBR与其他新型污水处理技术耦合,进一步降低出水污染物浓度。使用折流板将反应器分隔为厌氧池和好氧池,以石墨毡为阳极材料,以自制铜纳米线(Cu-NWs)导电微滤膜为阴极材料,构建自生电场膜生物反应器(SEF-MBR),用来处理模拟废水,研究了不同电极间距下自生电场强度的变化及污染物去除效果对自生电场强度变化的响应规律。结果表明:当电极间距从4 cm减小到2 cm时,自生电场强度提高了41.7%,出水化学需氧量(chemical oxygen demand, COD)、总氮(total nitrogen, TN)和总磷(total phosphorus, TP)的浓度分别降低了31.3%、24.2%和37.5%;电极间距对SEF-MRBs污泥的活性影响不大,但均高于对对照-MBR的影响;随电极间距减小,好氧池H
-N的降解,提高了微生物对正磷的吸收,从而降低了TP的含量。三维激发发射矩阵(EEM)结果显示,污水中类色氨酸的特征峰荧光强度降低了5.3%。而膜过滤作用去除有机物的贡献随自生电场强度的提高而降低。自生电场作用与膜过滤互补协同,可为优化出水水质提供双重保障。该技术可降低MBR运行成本,丰富MBR技术的理论成果,为城镇生活污水的回用提供参考。
Membrane bioreactor (MBR) has been widely used in the field of sewage treatment. However, nitrogen and phosphorus were difficult to comply with the criterion of Integrated Wastewater Discharge Standard. In order to enhance the pollutant removal effect, MBR could be coupled with other novel sewage treatment technologies to further reduce the pollutant concentration in the effluent. The reactor was separated into anaerobic and aerobic tanks by baffles. A novel spontaneous electric field membrane bioreactor (SEF-MBR) was established to treat synthetic wastewater by using graphite felt as anode and prepared Cu-nanowires (Cu-NWs) conductive microfiltration membrane as cathode. The variation of the spontaneous electric field intensity under different electrode distances and the response of pollutant removal effect to the change of the spontaneous electric field intensity were studied. The results showed that when the electrode distances decreased from 4 cm to 2 cm, the electric field intensity increased by 41.7%, and the chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) concentrations in the effluent decreases by 31.3%, 24.2% and 37.5%, respectively. The influences of electrode distance on the sludge activity of SEF-MBR sludge were negligible, but both higher than that of the Control MBR. With the decrease of electrode distance, the H
concentration in aerobic tank increased by 80.9%, which promoted the degradation of COD and
-N, and the uptake of orthophosphate by microorganisms, the TP content decreased accordingly. Three-dimensional excitation emission matrix (EEM) indicated that the characteristic peak fluorescence intensity of tryptophan in wastewater decreased by 5.3%. The contribution of membrane filtration to organic removal decreased with the increase of electric field intensity. The spontaneous electric field and membrane filtration were complementary and synergistic, which provided double guarantee for optimizing effluent quality. This technology can reduce the operating cost of MBR and enrich the theoretical achievements of MBR technology.
.
Schematic diagram and physical photo of SEF-MBR reactor
不同电极间距下SEF-MBRs的功率密度曲线和极化曲线
Power density curves and polarization curves of the SEF-MBRs at different electrode distances
COD balance calculation and removal mechanism analysis in SEF-MBRs and Control-MBR
[1] | UNESCO. Launch of united nations world water development report[R]. France: United Nations Educational, Scientific and Cultural Organization, UN, 2018. |
[2] | ZHANG J, SATTI A, CHEN X, et al. Low-voltage electric field applied into MBR for fouling suppression: Performance and mechanisms[J]. Chemical Engineering Journal, 2015, 273: 223-230. doi: 10.1016/j.cej.2015.03.044 |
[3] | VANYSACKER L, DECLERCK P, BILAD M R, et al. Biofouling on microfiltration membranes in MBRs: Role of membrane type and microbial community[J]. Journal of Membrane Science, 2014, 453(3): 394-401. |
[4] | BROECK V D, DIERDONCK V, NIJSKENS P, et al. The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR)[J]. Journal of Membrane Science, 2012, 401-402(10): 48-55. |
[5] | ASAI Y, MIYAHARA M, KOUZUMA A, et al. Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation[J]. Bioresources & Bioprocessing, 2017, 4(1): 30. |
[6] | LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental Science & Technology, 2006, 38(7): 2281-2285. |
[7] | MA J X, WANG Z W, HE D, et al. Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment[J]. Water Research, 2015, 78: 98-110. doi: 10.1016/j.watres.2015.03.033 |
[8] | WANG Y K, LI W W, SHENG G P, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15): 5794-5800. doi: 10.1016/j.watres.2013.06.058 |
[9] | IEROPOULOS I, GREENMAN J, MELHUISH C. Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability[J]. International Journal of Energy Research, 2008, 32(13): 1228-1240. doi: 10.1002/er.1419 |
[10] | YIN X F, LI X F, WANG X H, et al. A spontaneous electric field membrane bioreactor with the innovative Cu-nanowires conductive microfiltration membrane for membrane fouling mitigation and pollutant removal[J]. Water Environment Research, 2019, 1: 1-8. |
[11] | HUANG L H, LI X F, REN Y P, et al. Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell[J]. RSC Advances, 2017, 34(7): 20824-20832. doi: 10.1039/C7RA01014A |
[12] | LIU J D, LIU L F, GAO B, et al. Integration of microbial fuel cell with independent membrane cathode bioreactor for power generation, membrane fouling mitigation and wastewater treatment[J]. International Journal of Hydrogen Energy, 2014, 39(31): 17865-17872. doi: 10.1016/j.ijhydene.2014.08.123 |
[13] | 国家环境保护总局. 水和废水检测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[14] | VIANT M R, PINCETICH C A, HINTON D E, et al. Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1H NMR metabolomics[J]. Aquatic Toxicology, 2006, 76(3/4): 329-342. doi: 10.1016/j.aquatox.2005.10.007 |
[15] | LIU J M, WANG X H, WANG Z W, et al. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater[J]. Water Research, 2017, 110: 74-82. doi: 10.1016/j.watres.2016.12.012 |
[16] | YANG S S, GUO W Q, CHEN Y D, et al. Simultaneous in-situ sludge reduction and nutrient removal in an A2MO-M system: Performances, mechanisms, and modeling with an extended ASM2d model[J]. Water Research, 2016, 88: 524-537. doi: 10.1016/j.watres.2015.09.046 |
[17] | TAN X P, LIU Y J, YAN K H, et al. Differences in the response of soil dehydrogenase activity to Cd contamination are determined by the different substrates used for its determination[J]. Chemosphere, 2017, 169: 324-332. doi: 10.1016/j.chemosphere.2016.11.076 |
[18] | WANG J, BI F H, NGO H H, et al. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment[J]. Bioresource Technology, 2016, 200: 420-425. doi: 10.1016/j.biortech.2015.10.042 |
[19] | 吴金坤. PVDF的特性及其生产现状[J]. 化工新型材料, 1998(12): 10-13. |
[20] | WANG L, WEI J F, ZHAO K Y, et al. Preparation and characterization of high-hydrophilic polyhydroxy functional PP hollow fiber membrane[J]. Materials Letters, 2015, 159: 189-192. doi: 10.1016/j.matlet.2015.06.089 |
[21] | LIU J D, LIU L F, GAO B, et al. Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation[J]. Journal of Membrane Science, 2013, 430: 196-202. doi: 10.1016/j.memsci.2012.11.046 |
[22] | WANG Y P, LIU X W, LI W W, et al. A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment[J]. Applied Energy, 2012, 98: 230-235. doi: 10.1016/j.apenergy.2012.03.029 |
[23] | ZHOU G W, ZHOU Y H, ZHOU G Q, et al. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation[J]. Bioresource Technology, 2015, 196: 648-655. doi: 10.1016/j.biortech.2015.08.032 |
[24] | ZHANG G, ZHANG H, MA Y, et al. Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation[J]. Enzyme and Microbial Technology, 2014, 60: 56-63. doi: 10.1016/j.enzmictec.2014.04.005 |
[25] | SU X, TIAN Y, SUN Z, et al. Performance of a combined system of microbial fuel cell and membrane bioreactor: Wastewater treatment, sludge reduction, energy recovery and membrane fouling[J]. Biosensors & Bioelectronics, 2013, 49(22): 92-98. |
[26] | LI H, TIAN Y, ZUO W, et al. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell[J]. Bioresource Technology, 2016, 205: 104-110. doi: 10.1016/j.biortech.2016.01.042 |
[27] | YAO S, HE Y L, LI Y S, et al. Effect of the membrane electrode assemble design on the performance of single chamber microbial fuel cells[J]. Energy Procedia, 2014, 61: 1947-1951. doi: 10.1016/j.egypro.2014.12.249 |
[28] | MALAMIS S, KATSOU E, TAKOPOULOS K, et al. Assessment of metal removal, biomass activity and RO concentrate treatment in an MBR-RO system[J]. Journal of Hazardous Materials, 2012, 38(1): 23-31. |
[29] | THRASH J C, COATES J D. Review: Direct and indirect electrical stimulation of microbial metabolism[J]. Environmental Science & Technology, 2008, 42(11): 3921-3931. |
[30] | SUNEETHI S, JOSEPH K. ANAMMOX process start up and stabilization with an anaerobic seed in anaerobic membrane bioreactor (AnMBR)[J]. Bioresource Technology, 2011, 102(19): 8860-8867. doi: 10.1016/j.biortech.2011.06.082 |
[31] | EMMA F, SCALSCHI L, LLORENS E, et al. ${\rm{NH}}_4^ + $ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation[J]. Journal of Experimental Botany, 2015, 66(21): 6777-6790. doi: 10.1093/jxb/erv382 |
[32] | RODRIGUES C G. Influence of the concentration, temperature and electric field intensity on the electron mobility in n-doped zinc sulphide[J]. European Physical Journal B, 2009, 72(3): 405-408. doi: 10.1140/epjb/e2009-00372-3 |
[33] | FLESZAR B, PO?SZY?SKA J. An attempt to define benzene and phenol electrochemical oxidation mechanism[J]. Electrochimica Acta, 1985, 30(1): 31-42. doi: 10.1016/0013-4686(85)80055-4 |
[34] | BEMAN J M, POPP B N, FRANCIS C A. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California[J]. Isme Journal, 2008, 2(4): 429-441. doi: 10.1038/ismej.2007.118 |
[35] | YANG S, YANG F, FU Z, et al. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal[J]. Bioresource Technology, 2009, 100(8): 2369-2374. doi: 10.1016/j.biortech.2008.11.022 |
[36] | LI Y, HE Y, OHANDJA D, et al. Simultaneous nitrification-denitrification achieved by an innovative internal-loop airlift MBR: Comparative study[J]. Bioresource Technology, 2008, 99(13): 5867-5872. doi: 10.1016/j.biortech.2007.10.001 |
[37] | TANG B, SONG H, BIN L, et al. Determination of the profile of DO and its mass transferring coefficient in a biofilm reactor packed with semi-suspended bio-carriers[J]. Bioresource Technology, 2017, 241: 54-62. doi: 10.1016/j.biortech.2017.05.071 |
[38] | XIONG J, FU D, SINGH R P, et al. Structural characteristics and development of the cake layer in a dynamic membrane bioreactor[J]. Separation and Purification Technology, 2016, 167: 88-96. doi: 10.1016/j.seppur.2016.04.040 |
[39] | ROMERA-CASTILLO C, áLVAREZ-SALGADO X A, GALí M, et al. Combined effect of light exposure and microbial activity on distinct dissolved organic matter pools. A seasonal field study in an oligotrophic coastal system (Blanes Bay, NW Mediterranean)[J]. Marine Chemistry, 2013, 148: 44-51. doi: 10.1016/j.marchem.2012.10.004 |
[40] | COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3 |
[41] | BURKE M, AUGENSTEIN L. A comparison of the effects of ultraviolet and ionizing radiations on trypsin activity and on its constituent amino acids[J]. Biochemical Journal, 1969, 114(3): 535-545. doi: 10.1042/bj1140535 |
[42] | CORY R M, KAPLAN L A. Biological lability of streamwater fluorescent dissolved organic matter[J]. Limnology and Oceanography, 2012, 57(5): 1347-1360. doi: 10.4319/lo.2012.57.5.1347 |
[43] | SWEENEY J A, ASHER S A. Tryptophan UV resonance Raman excitation profiles[J]. Journal of Physical Chemistry B, 1990, 94(12): 4784-4791. doi: 10.1021/j100375a009 |
[44] | OBA T, MAENO Y, NAGAO M, et al. Cellular redox state protects acetaldehyde-induced alteration in cardiomyocyte function by modifying Ca2+ release from sarcoplasmic reticulum[J]. AJP Heart and Circulatory Physiology, 2008, 294(1): 121-133. doi: 10.1152/ajpheart.00520.2007 |
[45] | ZHANG H L, FANG W, WANG Y P, et al. Phosphorus removal in an enhanced biological phosphorus removal process: Roles of extracellular polymeric substances[J]. Environmental Science & Technology, 2013, 47(20): 11482-11489. |
[46] | WANG R D, PENG Y Z, CHENG Z L, et al. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system[J]. Bioresource Technology, 2014, 169: 307-312. doi: 10.1016/j.biortech.2014.06.040 |