华南农业大学资源环境学院,广州,510642
College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
城市河道底泥致黑臭多污染物的同步耦合去除是当前研究的热点。为实现河道底泥致黑臭污染物的同步去除,采用电动修复技术开展了氧化去除黑臭底泥硫化物、亚铁和氨氮等还原性污染物的室内模拟实验。实验结果表明:在单向通电(1.5 V·cm
)10 d后,阳极区对底泥硫化物(AVS)、亚铁有明显的氧化效果,去除率分别达到59.51%和79.41%,但阴极的去除效果不明显;阳极区和阴极区均对间隙水氨氮有明显的去除效果,去除率分别为56.5%和73.9%。在氧化过程中,阳极和阴极出现明显的酸化和碱化现象,而这种两极酸碱化可以通过周期性切换电极的方式加以避免。在电极切换频率为1、2.5和5 d·次
时,对氨氮去除效果最佳。硫化物、亚铁、氨氮最大去除率可分别达到76.19%,72.48%和88.57%。由此可见,电动修复可以同步去除底泥中的致黑臭污染物质,改善水体水质,但其去除率有待进一步优化提高。
Synchronous removal of multi-pollutants in black and odorous sediment in urban rivers is a hot research topic nowadays. To achieve synchronous removal of multi-pollutants in black and odorous sediment, the indoor simulation experiments of oxidation removing the reductive pollutants in black and odorous sediment, such as sulfide, ferrous and ammonia nitrogen, were conducted with electrickinetic remediation technology. The results showed that after 10 days treatment by one-way electrode electrolysis (1.5 V·cm
), acidic volatile sulfide (AVS) and ferrous iron could be obviously oxidized in the anode sediment area, with the removal rates of 59.51% and 79.41%, respectively; but their removal effects in the cathode area was not significant. In addition, the ammonia nitrogen concentrations in interstitial water could be significantly reduced in both anode and cathode area, and the corresponding removal rates were 56.5% and 73.9%, respectively. However, during the oxidation process, obvious acidification in anode area and alkalinization in cathode area occurred, which could be avoided by periodically switching the electrodes. At the electrode switching frequencies of 1-, 2.5-, and 5-day per cycle, the oxidation efficiencies of black-odorous pollutants were significantly different during the electrokinetic remediation. In addition, the optimized electrode switching frequency for sulfide and ferrous iron removal was 5-day per cycle, while for ammonia nitrogen removal was 2.5-day per cycle. The maximum removal rates of sulfide, ferrous iron and ammonia nitrogen could reach 76.19%, 72.48% and 88.57%, respectively. The above findings indicated that electrickinetic remediation technology could simultaneously remove multi-pollutants in the black-odorous sediments and improve the water quality, but the corresponding removal efficiencies may require further improvement.
.
Device model of electrokinetic remediation
单向电动修复过程中底泥电流、pH和Eh的变化
Variation of electricity, pH and Eh during electrokinetic remediation with one-way electrode
Variation of AVS and ferrous concentration in sediment during the electrokinetic remediation with one-way electrode
在电动修复过程中底泥间隙水氨氮、硝态氮及底泥铵态氮的变化
Variations of nitrate and ammonium concentration in interstitial water and ammonia in sediment during electrokinetic remediation with one-way electrode
Variations of electricity at different electrode switching frequencies
Variations of pH and Eh of sediment at different electrode switching frequencies
in sediment at different electrode switching frequencies
不同电极切换频率下间隙水氨氮和铵态氮的变化
Variations of ammonium in interstitial water and sediment at different electrode switching frequencies
[1] | 中华人民共和国住房和城乡建设部, 生态环境部. 住房城乡建设部 生态环境部关于印发城市黑臭水体治理攻坚战实施方案的通知[EB/OL]. [2019-09-06]. http://www.mohurd.gov.cn/wjfb/201810/t20181015_237912.html. |
[2] | 刘晓玲, 徐瑶瑶, 宋晨, 等. 城市黑臭水体治理技术及措施分析[J]. 环境工程学报, 2019, 13(3): 519-529. doi: 10.12030/j.cjee.201812181 |
[3] | 孙韶玲. 水体黑臭演化过程及挥发性硫化物的产生机制初步研究[D]. 北京: 中国科学院大学, 2017. |
[4] | 王旭, 王永刚, 孙长虹, 等. 城市黑臭水体形成机理与评价方法研究进展[J]. 应用生态学报, 2016, 27(4): 1331-1340. |
[5] | HE Z H, HUANG R, LIANG Y H, et al. Index for nitrate dosage calculation on sediment odor control using nitrate-dependent ferrous and sulfide oxidation interactions[J]. Journal of Environmental Management, 2018, 226: 289-297. doi: 10.1016/j.jenvman.2018.08.037 |
[6] | HE Z H, LONG X X, LI L Y, et al. Temperature response of sulfide/ferrous oxidation and microbial community in anoxic sediments treated with calcium nitrate addition[J]. Journal of Environmental Management, 2017, 191: 209-218. doi: 10.1016/j.jenvman.2017.01.008 |
[7] | LIU X N, TAO Y, ZHOU K, et al. Effect of water quality improvement on the remediation of river sediment due to the addition of calcium nitrate[J]. Science of the Total Environment, 2017, 575: 887-894. doi: 10.1016/j.scitotenv.2016.09.149 |
[8] | LIU T Z, YUAN J J, DONG W Y, et al. Effects on inorganic nitrogen compounds release of contaminated sediment treatment with in situ calcium nitrate injection[J]. Environmental Science and Pollution Research, 2015, 22(2): 1250-1260. doi: 10.1007/s11356-014-3421-7 |
[9] | 余光伟, 余绵梓, 种云霄, 等. 投加硝酸钙对城市黑臭河道底泥氮迁移转化的影响机制[J]. 环境工程学报, 2015, 9(8): 82-89. |
[10] | 张慧妍. 原位注射硝酸钙修复污染底泥过程中无机氮的迁移与转化[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
[11] | MOGHADAM M J, MOAYEDI H, SADEGHI M M, et al. A review of combinations of electrokinetic applications[J]. Environmental Geochemistry and Health, 2016, 38(6): 1217-1227. doi: 10.1007/s10653-016-9795-3 |
[12] | CANG L, FAN G P, ZHOU D M, et al. Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and pH control[J]. Chemosphere, 2013, 90(8): 2326-2331. doi: 10.1016/j.chemosphere.2012.10.062 |
[13] | PAZOS M, IGLESIAS O, GóMEZ J, et al. Remediation of contaminated marine sediment using electrokinetic-Fenton technology[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(3): 932-937. doi: 10.1016/j.jiec.2012.11.010 |
[14] | 刘钊, 党岩, 田皓中, 等. 外加电势强化厌氧氨氧化工艺处理垃圾焚烧渗沥液短程硝化出水[J]. 环境工程学报, 2019, 13(7): 1670-1677. doi: 10.12030/j.cjee.201902093 |
[15] | LIN H J, WILLIAMS N, KING A, et al. Electrochemical sulfide removal by low-cost electrode materials in anaerobic digestion[J]. Chemical Engineering Journal, 2016, 297: 180-192. doi: 10.1016/j.cej.2016.03.086 |
[16] | QU B, FAN B, ZHU S K, et al. Anaerobic ammonium oxidation with an anode as the electron acceptor[J]. Environmental Microbiology Reports, 2014, 6(1): 100-105. doi: 10.1111/1758-2229.12113 |
[17] | SHU J C, SUN X L, LIU R L, et al. Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents[J]. Ecotoxicology and Environmental Safety, 2019, 171: 523-529. doi: 10.1016/j.ecoenv.2019.01.025 |
[18] | 郭迪. 电化学技术去除海水养殖废水中氨氮的研究[D]. 杭州: 浙江大学, 2016. |
[19] | 宋协法, 边敏, 黄志涛, 等. 电化学氧化法在循环水养殖系统中去除氨氮和亚硝酸盐效果研究[J]. 中国海洋大学学报(自然科学版), 2016, 46(11): 127-135. |
[20] | 林玉环, 郭明新, 庄岩. 底泥中酸性挥发硫及同步浸提金属的测定[J]. 环境科学学报, 1997, 17(3): 97-102. |
[21] | MOREIRA F C, BOAVENTURA R A R, BRILLAS E, et al. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environmental, 2017, 202: 217-261. doi: 10.1016/j.apcatb.2016.08.037 |
[22] | 张宁. 电化学阳极氧化硫化物的研究[D]. 南京: 南京理工大学, 2012. |
[23] | WANG Y C, LIN H J, HU B. Electrochemical removal of hydrogen sulfide from swine manure[J]. Chemical Engineering Journal, 2019, 356: 210-218. doi: 10.1016/j.cej.2018.08.171 |
[24] | DING J, ZHAO Q L, JIANG J Q, et al. Electrochemical disinfection and removal of ammonia nitrogen for the reclamation of wastewater treatment plant effluent[J]. Environmental Science and Pollution Research, 2017, 24(6): 5152-5158. doi: 10.1007/s11356-016-6618-0 |
[25] | LI L, LIU Y. Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics[J]. Journal of Hazardous Materials, 2009, 161(2/3): 1010-1016. |
[26] | GARCIA-SEGURA S, OCON J D, CHONG M N. Electrochemical oxidation remediation of real wastewater effluents: A review[J]. Process Safety and Environmental Protection, 2018, 113: 48-67. doi: 10.1016/j.psep.2017.09.014 |
[27] | 蒋沁芮, 杨暖, 吴亭亭, 等. 生物电化学脱氮技术研究进展[J]. 应用与环境生物学报, 2018, 24(2): 408-414. |
[28] | NANCHARAIAH Y V, VENKATA MOHAN S, LENS P N L. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems[J]. Bioresource Technology, 2016, 215: 173-185. doi: 10.1016/j.biortech.2016.03.129 |
[29] | 胡承志, 刘会娟, 曲久辉. 电化学水处理技术研究进展[J]. 环境工程学报, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179 |
[30] | LU P, FENG Q Y, MENG Q J, et al. Electrokinetic remediation of chromium- and cadmium-contaminated soil from abandoned industrial site[J]. Separation and Purification Technology, 2012, 98: 216-220. doi: 10.1016/j.seppur.2012.07.010 |
[31] | 魏树和, 徐雷, 韩冉, 等. 重金属污染土壤的电动-植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版), 2019, 43(1): 154-160. |