2.清华大学环境学院,北京 100084
1.School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China
2.School of Environment, Tsinghua University, Beijing 100084, China
纤维素乙醇被认为是最佳的替代燃料之一,但依然存在纤维素水解效率低和水解糖液中有害物质影响酵母菌活性等问题,从而导致其生产成本过高,无法实现工业化生产。选取水稻秸秆、小麦秸秆、高粱秸秆、毛竹等4种典型生物质,进行了基于酸催化法与同步酶解发酵法制取纤维素乙醇工艺条件的优选研究,采用DNS还原糖测定法测定原料还原糖转化量以表征预处理效果,并使用气相色谱法测定乙醇转化率。结果表明:水稻以5%固体装载量在125 ℃下经0.5%稀硫酸处理10 min后,产糖率达28.74%,处理效果在4种生物质中最优;发酵2 d后的水稻和小麦的乙醇转化率分别为51%和54%,显著高于高粱与毛竹;发酵5 d后高粱和毛竹的乙醇转化率达到了61%和65%,高于水稻和小麦。以上结果对改善传统生物质生产纤维素乙醇产率低的问题,具有一定的实际指导意义。
Cellulosic ethanol is considered to be one of the best alternative liquid fuel. However, a series of problems, such as low cellulosic hydrolysis efficiency and the yeast activity inhibited by the harmful substances in hydrolysis liquid, lead to the high production cost of cellulosic ethanol and a low state of industrial production. In this study, four types of biomass, including rice straw, wheat straw, sorghum straw, and moso bamboo, were selected to optimize the process conditions for cellulosic ethanol preparation based on acid catalysis synchronized with enzymatic hydrolysis and fermentation. The DNS reducing sugar measurement method was used to detect the reducing sugar conversion of the feedstock and characterize the effect of pretreatment, and gas chromatography was used to measure the ethanol conversion. The results showed that the reducing sugar yield from rice straw was the highest among four types of biomass, and the sugar yield rate achieved 28.74% under the conditions of the solid loading from 5%, 125 ℃, 10 minutes treatment with 0.5% sulfuric acid. After two days of fermentation, the ethanol conversion rates for rice and wheat straw were 51% and 54%, respectively, which was significantly higher than those of sorghum and wheat straw. However, after five days of fermentation, the ethanol conversion rates from sorghum and wheat straw were higher than those of the rice and wheat straw, reaching 61% and 65%, respectively. The results have certain practical guidance significance for improving the low yield of traditional ethanol yield from biomass.
.
Effect of solid loading of different biomass on the concentration and conversion of reducing sugar
Effect of reaction time on the concentration and conversion of reducing sugar
Effect of reaction temperature on the concentration and conversion of reducing sugar
Effect of sulphuric acid concentration on the concentration and conversion of reducing sugar
Effect of enzyme dosage on the ethanol conversion rate
Effect of fermentation time on the ethanol conversion rate
[1] | 郝军芳. 中国生物乙醇产业投资现状和趋势分析[J]. 生态经济, 2010(11): 166-168. |
[2] | TOKIMATSU K, YASUOKA R, NISHIO M. Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use[J]. Applied Energy, 2017, 185(Part 2): 1899-1906. doi: 10.1016/j.apenergy.2015.11.077 |
[3] | 方志锋, 刘昆仑, 陈复生, 等. 木质纤维素类生物质制备生物乙醇研究进展[J]. 现代化工, 2013, 33(1): 30-33. doi: 10.3969/j.issn.0253-4320.2013.01.008 |
[4] | 吴伟光, 仇焕广, 黄季焜. 全球生物乙醇发展现状、可能影响与我国的对策分析[J]. 中国软科学, 2009(3): 23-29. doi: 10.3969/j.issn.1002-9753.2009.03.004 |
[5] | 李燕红, 赵辅昆. 纤维素酶的研究进展[J]. 生命科学, 2005, 17(5): 392-397. doi: 10.3969/j.issn.1004-0374.2005.05.005 |
[6] | 孙建飞, 郑聚锋, 程琨, 等. 基于可收集的秸秆资源量估算及利用潜力分析[J]. 植物营养与肥料学报, 2018, 24(2): 404-413. doi: 10.11674/zwyf.17244 |
[7] | 杨利平, 蔡水文, 罗玲, 等. 生物乙醇生产及纤维素酶的开发进展[J]. 西部资源, 2012(3): 132-134. |
[8] | 高鹏飞. 玉米秸秆制备生物乙醇及其综合利用[D]. 西安: 西北大学, 2009. |
[9] | 闫莉, 吕惠生, 张敏华. 纤维素乙醇生产技术及产业化进展[J]. 酿酒科技, 2013(10): 80-84. |
[10] | WYMAN C E, DALE B E, ELANDER R T, et al. Coordinated development of leading biomass pretreatment technologies[J]. Bioresource Technology, 2005, 96(18): 1959-1966. doi: 10.1016/j.biortech.2005.01.010 |
[11] | 尚淑梅. 降解半纤维素高温厌氧菌的筛选及其乙醇发酵代谢机理研究[D]. 昆明: 昆明理工大学, 2013. |
[12] | SHI J H, LIU J, LI M, et al. Acid-free ethanol-water pretreatment with low ethanol concentration for robust enzymatic saccharification of cellulose in bamboo[J]. Bioenergy Research, 2018, 11(3): 665-676. doi: 10.1007/s12155-018-9928-x |
[13] | 包海军. 铜藻制备生物乙醇的原料预处理及发酵条件优化研究[D]. 杭州: 浙江工业大学, 2013. |
[14] | 刘华敏. 生物质轻度预处理液化技术与机理研究[D]. 广州: 华南理工大学, 2013. |
[15] | 王丽. 不同预处理工艺生产纤维素乙醇的技术经济分析[D]. 大连: 大连理工大学, 2015. |
[16] | 孙麟, 高慧俊, 宝力德. 不同的预处理方式对甜高粱秸秆纤维素酶降解效率的影响[J]. 中国农学通报, 2010, 26(9): 346-351. |
[17] | 高月淑, 许敬亮, 袁振宏, 等. 木质纤维原料同步糖化发酵制取生物乙醇研究进展[J]. 生物质化学工程, 2016, 50(3): 65-70. doi: 10.3969/j.issn.1673-5854.2016.03.011 |
[18] | 李雅丽, 杨珊, 刘娟. 农作物秸秆纤维素含量的测定与分析[J]. 渭南师范学院学报, 2017, 32(4): 22-26. |
[19] | THAMMASOUK K, TANDJO D, PENNER M H. Influence of extractives on the analysis of herbaceous biomass[J]. Journal of Agricultural and Food Chemistry, 1997, 45(2): 437-443. doi: 10.1021/jf960401r |
[20] | 王鹏亭, 赵宗杰, 周荣灵, 等. 3, 5-二硝基水杨酸法测定樟芝中多糖的含量[J]. 食品研究与开发, 2016, 37(9): 163-167. doi: 10.3969/j.issn.1005-6521.2016.09.038 |
[21] | 冯东, 李秋顺, 刘凤, 等. 葡萄糖的测定方法与应用研究进展[J]. 传感器与微系统, 2015, 34(12): 5-8. |
[22] | 牟建楼, 王颉, 张伟, 等. 乙醇的测定方法综述[J]. 酿酒, 2006(2): 46-48. doi: 10.3969/j.issn.1002-8110.2006.02.025 |
[23] | 李扬. 基于中红外光谱技术监测生物乙醇发酵过程: 乙醇和葡萄糖含量的测定[D]. 长春: 吉林大学, 2011. |
[24] | YUAN Z, WEI W, LI G, et al. High titer ethanol production from combined alkaline/alkaline hydrogen peroxide pretreated bamboo at high solid loading[J/OL]. [2019-08-01]. Waste and Biomass Valorization, 2019, https://doi.org/10.1007/s12649-019-00638-5. |
[25] | 张建. 木质纤维素原料生物转化生产纤维素乙醇过程的关键技术研究[D]. 上海: 华东理工大学, 2011. |
[26] | 惠珍珍, 迟聪聪, 柳咪, 等. 乙酸预处理对木质纤维素结构及性能的影响[J]. 林业工程学报, 2019, 4(1): 88-93. |
[27] | 虞雯, 泮国荣, 肖竹钱, 等. 螺杆挤压法木质纤维素预处理的研究进展[J]. 科技通报, 2019, 35(6): 13-19. |
[28] | 张晓旭, 陈复生, 辛颖, 等. 纤维素预处理技术的研究进展[J]. 粮食与油脂, 2018, 31(6): 7-10. doi: 10.3969/j.issn.1008-9578.2018.06.003 |
[29] | 孟雪靖, 杨永健, 周诗丹. 黑龙江省农作物秸秆资源利用现状及对策研究[J]. 农业经济, 2018(3): 38-40. doi: 10.3969/j.issn.1001-6139.2018.03.014 |
[30] | SUN Y, CHENG J Y. Hydrolysis of lignocellulosic materials for ethanol production: A review[J]. Bioresource Technology, 2002, 83(1): 1-11. doi: 10.1016/S0960-8524(01)00212-7 |
[31] | ERIKSSON T, BORJESSON J, TJERNELD F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose[J]. Enzyme and Microbial Technology, 2002, 31(3): 353-364. doi: 10.1016/S0141-0229(02)00134-5 |
[32] | ALKASRAWI M, ERIKSSON T, BORJESSON J, et al. The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol[J]. Enzyme and Microbial Technology, 2003, 33(1): 71-78. doi: 10.1016/S0141-0229(03)00087-5 |
[33] | BIANCHI F, VAN'T KLOOSTER J S, RUIZ S J, et al. Regulation of amino acid transport in Saccharomyces cerevisiae[J]. Microbiology and Molecular Biology Reviews, 2019, 83(4): 1-38. doi: 10.1128/MMBR.00024-19 |
[34] | LEWIS J A, ELKON I M, MCGEE M A, et al. Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance[J]. Genetics, 2010, 186(4): 1197-1227. doi: 10.1534/genetics.110.121871 |
[35] | HOU J, SCALCINATI G, OLDIGES M, et al. Metabolic impact of increased NADH availability in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2010, 76(3): 851-859. doi: 10.1128/AEM.02040-09 |
[36] | 齐慧, 武小芬, 陈亮, 等. NaOH协同辐照预处理提高稻草纤维素酶解转化率[J]. 核农学报, 2019, 33(6): 1190-1198. doi: 10.11869/j.issn.100-8551.2019.06.1190 |
[37] | 唐勇. 纤维素乙醇及乳酸耦合炼制过程与机理研究[D]. 北京: 北京林业大学, 2014. |