杨羽菲1,
陈金楠2
1.沈阳建筑大学市政与环境工程学院,沈阳 110168
2.沈阳城市建设学院市政与环境工程系,沈阳 110167
作者简介: 唐婧(1980—),女,博士,副教授。研究方向:水污染控制理论与技术研究。E-mail:fairy_ben@163.com.
通讯作者: 唐婧,fairy_ben@163.com ;
中图分类号: X522
Nitrogen and phosphorus removal performance of microelectrolysis coupled with solid denitrification and its microbial community analysis
TANG Jing1,,,YANG Yufei1,
CHEN Jinnan2
1.School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2.Department of Municipal and Environmental Engineering, Shenyang Urban Construction University, Shenyang 110167, China
Corresponding author: TANG Jing,fairy_ben@163.com ;
CLC number: X522
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为提高低碳氮比污水中氮、磷的去除率,通过铁碳微电解耦合固相反硝化系统强化生物脱氮除磷的效果,分别考察了HRT、DO、pH对耦合系统中氮、磷去除效果的影响,并对铁碳颗粒(FC)、固体碳源颗粒(CC)和悬浮污泥(SS)的微生物群落结构进行了分析。结果表明:当进水C/N=1.5时,耦合系统的最佳运行参数为HRT=4 h、DO=2.0 mg·L?1、pH=7.0;此时
关键词: 铁碳微电解/
固相反硝化/
脱氮除磷/
低碳氮比/
微生物群落
Abstract:In order to improve the removal efficiency of nitrogen and phosphorus in sewage with low carbon-nitrogen ratio, the effects of HRT, DO and pH on nitrogen and phosphorus removal were investigated in a coupled system of iron-carbon microelectrolysis and solid denitrification. The microbial community structure in the iron carbon particles (FC), solid carbon source particles (CC) and suspended sludge (SS) were analyzed. The results showed that when the influent C/N ratio was 1.5, the optimal operating parameters of the coupling system were HRT=4 h, DO=2.0 mg·L?1, pH=7.0, and the removal rates of
Key words:iron carbon microelectrolysis/
solid denitrification/
nitrogen and phosphorus removal/
low carbon to nitrogen ratio/
microbial community.
图1铁碳微电解填料对脱氮除磷效果的影响
Figure1.Effect of iron-carbon microelectrolysis filler on nitrogen and phosphorus removal
下载: 全尺寸图片幻灯片
图2HRT对耦合系统脱氮除磷效果的影响
Figure2.Effect of HRT on nitrogen and phosphorus removal in the coupled system
下载: 全尺寸图片幻灯片
图3DO对耦合系统脱氮效果的影响
Figure3.Effect of DO on nitrogen removal in the coupled system
下载: 全尺寸图片幻灯片
图4pH对耦合系统脱氮效果的影响
Figure4.Effect of pH on nitrogen removal in the coupled system
下载: 全尺寸图片幻灯片
图5门水平的物种相对丰度
Figure5.Relative abundance of microbes at phylum level
下载: 全尺寸图片幻灯片
图6纲水平的物种相对丰度
Figure6.Relative abundance of microbes at class level
下载: 全尺寸图片幻灯片
图7属水平的物种相对丰度
Figure7.Relative abundance of microbes at genus level
下载: 全尺寸图片幻灯片
表1门水平上各样本主要种群相对丰度
Table1.Relative abundance of main population of each sample at the phylum level
微生物种群 | FC样本 | CC样本 | SS样本 |
Proteobacteria | 72.66 | 67.43 | 68.66 |
Actinobacteria | 15.86 | 11.47 | 14.06 |
Bacteroidetes | 7.76 | 13.82 | 13.86 |
Gemmatimonadetes | 1.50 | 4.61 | 1.89 |
Planctomycetes | 1.49 | 1.56 | 0.85 |
Verrucomicrobia | 0.34 | 0.62 | 0.38 |
Acidobacteria | 0.15 | 0.14 | 0.10 |
Firmicutes | 0.06 | 0.05 | 0.08 |
微生物种群 | FC样本 | CC样本 | SS样本 |
Proteobacteria | 72.66 | 67.43 | 68.66 |
Actinobacteria | 15.86 | 11.47 | 14.06 |
Bacteroidetes | 7.76 | 13.82 | 13.86 |
Gemmatimonadetes | 1.50 | 4.61 | 1.89 |
Planctomycetes | 1.49 | 1.56 | 0.85 |
Verrucomicrobia | 0.34 | 0.62 | 0.38 |
Acidobacteria | 0.15 | 0.14 | 0.10 |
Firmicutes | 0.06 | 0.05 | 0.08 |
下载: 导出CSV
表2纲水平上各样本主要种群相对丰度
Table2.Relative abundance of main population of each sample at the class level
微生物种群 | FC样本 | CC样本 | SS样本 |
Alphaproteobacteria | 36.73 | 37.21 | 46.18 |
Gammaproteobacteria | 31.29 | 22.48 | 16.20 |
Actinobacteria | 15.86 | 11.47 | 14.06 |
Sphingobacteriia | 6.47 | 11.12 | 11.39 |
Betaproteobacteria | 4.60 | 7.71 | 6.25 |
Gemmatimonadetes | 1.50 | 4.61 | 1.89 |
Cytophagia | 1.12 | 2.20 | 1.93 |
Planctomycetia | 1.47 | 1.54 | 0.85 |
微生物种群 | FC样本 | CC样本 | SS样本 |
Alphaproteobacteria | 36.73 | 37.21 | 46.18 |
Gammaproteobacteria | 31.29 | 22.48 | 16.20 |
Actinobacteria | 15.86 | 11.47 | 14.06 |
Sphingobacteriia | 6.47 | 11.12 | 11.39 |
Betaproteobacteria | 4.60 | 7.71 | 6.25 |
Gemmatimonadetes | 1.50 | 4.61 | 1.89 |
Cytophagia | 1.12 | 2.20 | 1.93 |
Planctomycetia | 1.47 | 1.54 | 0.85 |
下载: 导出CSV
表3属水平上各样本主要种群相对丰度
Table3.Relative abundance of main population of each sample at the genus level
微生物种群 | FC样本 | CC样本 | SS样本 |
Gemmobacter | 25.50 | 23.64 | 32.53 |
Actinotalea | 14.61 | 10.57 | 13.44 |
Arenimonas | 6.09 | 6.10 | 5.75 |
Defluviimonas | 4.81 | 5.12 | 5.59 |
Lacibacter | 3.42 | 5.50 | 5.26 |
Lysobacter | 3.72 | 4.55 | 3.31 |
Flavihumibacter | 2.04 | 3.19 | 3.82 |
Gemmatimonas | 1.50 | 4.61 | 1.89 |
Novosphingobium | 1.59 | 2.55 | 2.66 |
Thauera | 0.74 | 1.87 | 2.03 |
Dechloromonas | 0.91 | 1.31 | 0.70 |
微生物种群 | FC样本 | CC样本 | SS样本 |
Gemmobacter | 25.50 | 23.64 | 32.53 |
Actinotalea | 14.61 | 10.57 | 13.44 |
Arenimonas | 6.09 | 6.10 | 5.75 |
Defluviimonas | 4.81 | 5.12 | 5.59 |
Lacibacter | 3.42 | 5.50 | 5.26 |
Lysobacter | 3.72 | 4.55 | 3.31 |
Flavihumibacter | 2.04 | 3.19 | 3.82 |
Gemmatimonas | 1.50 | 4.61 | 1.89 |
Novosphingobium | 1.59 | 2.55 | 2.66 |
Thauera | 0.74 | 1.87 | 2.03 |
Dechloromonas | 0.91 | 1.31 | 0.70 |
下载: 导出CSV
表4多样性指数统计表
Table4.Statistical table of diversity index
样本 | 序列数目 | OTU数目 | Shannon指数 | ACE指数 | Chao1指数 | Simpson指数 | 覆盖率 |
CC | 42 598 | 1 947 | 3.570 525 | 47 908.07 | 19 030.69 | 0.09 | 0.96 |
FC | 34 926 | 1 544 | 3.096 69 | 47 852.3 | 15 750.33 | 0.13 | 0.96 |
SS | 39 861 | 1 700 | 3.204 402 | 47 106.85 | 16 971.12 | 0.14 | 0.96 |
样本 | 序列数目 | OTU数目 | Shannon指数 | ACE指数 | Chao1指数 | Simpson指数 | 覆盖率 |
CC | 42 598 | 1 947 | 3.570 525 | 47 908.07 | 19 030.69 | 0.09 | 0.96 |
FC | 34 926 | 1 544 | 3.096 69 | 47 852.3 | 15 750.33 | 0.13 | 0.96 |
SS | 39 861 | 1 700 | 3.204 402 | 47 106.85 | 16 971.12 | 0.14 | 0.96 |
下载: 导出CSV
[1] | 毛福荣, 张超, 刘石虎, 等. 基于好氧反硝化及反硝化聚磷菌强化的低温低碳氮比生活污水生物处理中试研究[J]. 中国给水排水, 2019, 35(15): 19-24. |
[2] | 张树松, 樊月婷, 孙兴, 等. 菌株Diaphorobacter polyhydroxybutyrativorans SL-205的反硝化特性[J]. 中国环境科学, 2017, 37(9): 3532-3539. doi: 10.3969/j.issn.1000-6923.2017.09.041 |
[3] | 郑晓英, 乔露露, 王慰, 等. 碳源对反硝化生物滤池运行及微生物种群的影响[J]. 环境工程学报, 2018, 12(5): 1434-1442. doi: 10.12030/j.cjee.201710046 |
[4] | 孙迎雪, 胡银翠, 孙云祥, 等. 反硝化生物滤池深度脱氮机理[J]. 环境工程学报, 2012, 6(6): 1857-1862. |
[5] | 丁怡, 宋新山, 严登华, 等. 补充碳源提取液对人工湿地脱氮作用的影响[J]. 环境科学学报, 2012, 32(7): 1646-1652. |
[6] | 刘洋, 高健磊, 周子鹏. 铁碳微电解-ABR-改良CASS工艺处理制药废水[J]. 工业水处理, 2019, 39(5): 92-94. doi: 10.11894/iwt.2018-0468 |
[7] | 尚亚丹, 李政伟, 海热提, 等. 间歇曝气铁碳微电解耦合人工湿地脱氮除磷研究[J]. 水处理技术, 2018, 44(10): 99-102. |
[8] | 王田野, 魏荷芬, 胡子全, 等. 一株异养硝化好氧反硝化菌的筛选鉴定及其脱氮特性[J]. 环境科学学报, 2017, 37(3): 945-952. |
[9] | 王昌稳, 雷泽远, 李军, 等. 铁碳微电解预处理高盐腌制废水的运行方式研究[J]. 中国给水排水, 2018, 34(15): 95-99. |
[10] | 钱胜强, 杨扬, 等. 5种植物材料的水解释碳性能及反硝化效率[J]. 环境工程学报, 2014, 8(5): 1817-1824. |
[11] | 翟思媛, 赵迎新, 季民. 自养-异养反硝化协同作用强化污水深度脱氮研究进展[J]. 水处理技术, 2018, 44(6): 1-5. |
[12] | WANG Y Y, CHEN J, ZHOU S, et al. 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conversion related microorganisms in a CANON system in response to salt stress[J]. Chemical Engineering Journal, 2017, 317: 512-521. doi: 10.1016/j.cej.2017.02.096 |
[13] | 朱文优. 大曲中赭曲霉毒素A及其产生微生物的分布特征研究[D]. 无锡: 江南大学, 2017. |
[14] | 何毅, 朱静平. 铁碳微电解系统对废水中TP去除的效果及影响因素[J]. 西南科技大学学报, 2019, 34(1): 39-44. doi: 10.3969/j.issn.1671-8755.2019.01.007 |
[15] | 颜勇, 张佳男, 林涛, 等. 铁碳微电解/BAF预处理农村微污染原水[J]. 中国给水排水, 2018, 34(23): 50-53. |
[16] | WAMKAM C T, OPOKU M K, HONG H P. Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles[J]. Journal of Applied Physics, 2011, 109(1): 15-24. |
[17] | 贾雪雷, 朱崇梅, 张婉, 等. 微电解法去除生活污水中磷的试验研究[J]. 水处理技术, 2013, 39(10): 31-34. doi: 10.3969/j.issn.1000-3770.2013.10.007 |
[18] | 蒋志云, 韦佳敏, 缪新年, 等. ABR-MBR工艺反硝化除磷微生物群落特征分析[J]. 环境工程学报, 2019, 13(7): 1-9. |
[19] | MAO Y P, XIA Y, ZHANG T. Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing[J]. Bioresource Technology, 2013, 128(1): 703-710. |
[20] | ZHU I, GETTING T. A review of nitrate reduction using inorganic materials[J]. Environmental Technology Reviews, 2012, 1(1): 46-58. doi: 10.1080/09593330.2012.706646 |
[21] | 朱砺之, 黄娟, 傅大放, 等. 人工湿地生态系统中的微生物作用及PCR-DGGE技术的应用[J]. 安全与环境工程, 2012, 19(2): 26-30. doi: 10.3969/j.issn.1671-1556.2012.02.007 |
[22] | 刘亚利, 袁一星, 李欣, 等. 污泥发酵液对A2O脱氮除磷和微生物的影响[J]. 哈尔滨工业大学学报, 2014, 46(10): 42-46. doi: 10.11918/j.issn.0367-6234.2014.10.007 |
[23] | FENG C, ZHANG Z, WANG S, et al. Characterization of microbial community structure in a hybrid biofilm-activated sludge reactor for simultaneous nitrogen and phosphorus removal[J]. Journal of Environmental Biology, 2013, 34(2SI): 489-499. |
[24] | SHEN Z Q, ZHOU Y X, HU J, et al. Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support[J]. Journal of Hazardous Materials, 2013, 250: 431-438. |
[25] | 王思宇, 李军, 秀杰, 等. 添加芽孢杆菌污泥反硝化特性及菌群结构分析[J]. 中国环境科学, 2017, 37(12): 4649-4656. doi: 10.3969/j.issn.1000-6923.2017.12.030 |
[26] | XING W, LI J L, CONG Y, et al. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing[J]. Bioresourec Technology, 2017, 229: 134-142. doi: 10.1016/j.biortech.2017.01.010 |
[27] | 黄菲, 梅晓洁, 王志伟, 等. 冬季低温下MBR与CAS工艺运行及微生物群落特征[J]. 环境科学, 2014, 35(3): 1002-1008. |
[28] | ZHANG Y, XIE X, JIAO N, et al. Diversity and distribution of amoA-type nitrifying and nirS-type denitrifying microbial communities in the Yangtaze River estuary[J]. Biogeosciences Discussions, 2014, 11(8): 2131-2145. doi: 10.5194/bg-11-2131-2014 |
Turn off MathJax -->
点击查看大图
图( 7)表( 4)
计量
文章访问数:1611
HTML全文浏览数:1611
PDF下载数:27
施引文献:0
出版历程
收稿日期:2019-07-09
录用日期:2019-10-15
网络出版日期:2020-05-12
-->刊出日期:2020-05-01
-->
微电解耦合固相反硝化脱氮除磷效果及微生物分析
唐婧1,,,杨羽菲1,
陈金楠2
通讯作者: 唐婧,fairy_ben@163.com ;
作者简介: 唐婧(1980—),女,博士,副教授。研究方向:水污染控制理论与技术研究。E-mail:fairy_ben@163.com 1.沈阳建筑大学市政与环境工程学院,沈阳 110168
2.沈阳城市建设学院市政与环境工程系,沈阳 110167
收稿日期: 2019-07-09
录用日期: 2019-10-15
网络出版日期: 2020-05-12
关键词: 铁碳微电解/
固相反硝化/
脱氮除磷/
低碳氮比/
微生物群落
摘要:为提高低碳氮比污水中氮、磷的去除率,通过铁碳微电解耦合固相反硝化系统强化生物脱氮除磷的效果,分别考察了HRT、DO、pH对耦合系统中氮、磷去除效果的影响,并对铁碳颗粒(FC)、固体碳源颗粒(CC)和悬浮污泥(SS)的微生物群落结构进行了分析。结果表明:当进水C/N=1.5时,耦合系统的最佳运行参数为HRT=4 h、DO=2.0 mg·L?1、pH=7.0;此时${{\rm{NH}}_4^ + }$ -N、${{\rm{NO}}_3^ - }$ -N、TN、TP的去除率分别为95.63%、93.48%、94.72%、99.10%。高通量测序分析结果表明:在门水平上,3个样本(FC、CC、SS)中的优势菌门为Proteobacteria、Actinobacteria和Bacteroidetes,其中具有反硝化脱氮功能的Proteobacteria在FC、CC、SS中分别占样本总数的72.66%、67.43%、68.66%;在纲水平上,SS中Alphaproteobacteria的相对丰度显著高于FC和CC,FC中的Gammaproteobacteria的相对丰度显著高于CC和SS,CC中的Gemmatimonadetes相对丰度明显高于FC和SS,生物除磷主要发生在CC中;在属水平上,Gemmobacter在FC、CC、SS中的相对丰度分别为25.50%、23.64%、32.53%,对异养反硝化过程起到重要作用。以上结果有助于提高对微电解-自养/异养反硝化除磷耦合系统中微生物生态学的理解。
English Abstract
Nitrogen and phosphorus removal performance of microelectrolysis coupled with solid denitrification and its microbial community analysis
TANG Jing1,,,YANG Yufei1,
CHEN Jinnan2
Corresponding author: TANG Jing,fairy_ben@163.com ;
1.School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China2.Department of Municipal and Environmental Engineering, Shenyang Urban Construction University, Shenyang 110167, China
Received Date: 2019-07-09
Accepted Date: 2019-10-15
Available Online: 2020-05-12
Keywords: iron carbon microelectrolysis/
solid denitrification/
nitrogen and phosphorus removal/
low carbon to nitrogen ratio/
microbial community
Abstract:In order to improve the removal efficiency of nitrogen and phosphorus in sewage with low carbon-nitrogen ratio, the effects of HRT, DO and pH on nitrogen and phosphorus removal were investigated in a coupled system of iron-carbon microelectrolysis and solid denitrification. The microbial community structure in the iron carbon particles (FC), solid carbon source particles (CC) and suspended sludge (SS) were analyzed. The results showed that when the influent C/N ratio was 1.5, the optimal operating parameters of the coupling system were HRT=4 h, DO=2.0 mg·L?1, pH=7.0, and the removal rates of