温州大学生命与环境科学学院,温州 325035
College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
利用液相还原法,通过先负载再包裹的方式制备了4种不同炭铁质量比的生物炭负载羧甲基纤维素钠稳定化纳米铁(BC-nZVI-CMC)材料,并将其用于对水中Cr(Ⅵ)的去除,使用扫描电镜、X射线衍射和傅里叶红外等技术对BC-nZVI-CMC的结构与性质进行了表征。结果表明:BC-nZVI-CMC具有较好的分散性,粒径为纳米级且被CMC完全包覆,抗氧化能力得到较大提升,可有效去除水中Cr(Ⅵ);投加1 g·L
的Cr(Ⅵ)去除率达99.83%;pH越小,越有利于BC-nZVI-CMC对水中Cr(Ⅵ)的去除,最高去除率可达100%;BC-nZVI-CMC的抗氧化能力明显高于商品纳米铁和生物炭负载纳米铁;含有8 g·L
C/Fe=1∶1的BC-nZVI-CMC对电镀废水中Ni、Zn、Cu、总铬、Cr(Ⅵ)的去除率可达39.60%、91.70%、100%、91.69%、100%。上述研究结果对水中Cr(Ⅵ)去除新技术的开发有重要的参考价值。
In this study, biochars supported with sodium carboxymethyl cellulose-stabilized nano-iron (BC-nZVI-CMC) with four different carbon-iron mass ratios was prepared though liquid-phase reduction method and first supporting and then covering way, which were used to remove Cr(Ⅵ) from water. The structure and properties of BC-nZVI-CMC were characterized by scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The results showed that BC-nZVI-CMC presented good dispersion, nano-sized distribution, complete CMC coating and greatly improved anti-oxidation ability, it could effectively remove Cr(Ⅵ) from water. At the dosage of 1 g·L
BC-nZVI-CMC, 99.83% Cr(Ⅵ) could be removed from water with the initial concentration of 30 mg·L
. The lower the pH, the higher removal efficiency of Cr(Ⅵ) by BC-nZVI-CMC, and the highest removal efficiency could reach 100%. The anti-oxidation ability of BC-nZVI-CMC was significantly superior to that of commercial nano-iron and biochar-loaded nano-iron. At the dosage of 8 g·L
BC-nZVI-CMC with C/Fe=1∶1, the removal efficiencies of Ni, Zn, Cu, total chromium and Cr(Ⅵ) in electroplating wastewater could reach 39.60%, 91.70%, 100%, 91.69% and 100%, respectively. The result provides important reference for the development of new Cr(Ⅵ) removal technology from water.
.
不同颗粒SEM图和BC-nZVI-CMC粒径分布
SEM images of different particles and particle size distribution of BC-nZVI-CMC
BC、CMC-Na及BC-nZVI-CMC XRD图
XRD patterns of BC, CMC-Na and BC-nZVI-CMC
FT-IR spectra of BC-nZVI-CMC before and after reaction with Cr(Ⅵ)
Effect of different BC-nZVI-CMC dosages on Cr(Ⅵ) removal efficiency
Effect of pH on the Cr(Ⅵ) removal efficiency by BC-nZVI-CMC
Removal efficiency of Cr(Ⅵ) by different nano-iron particles after exposure to air
4种不同炭铁比BC-nZVI-CMC对电镀废水重金属的去除效果
Removal efficiency of heavy metals in electroplating wastewater by BC-nZVI-CMC with four different carbon-iron ratios
Cr(Ⅵ) adsorption kinetics on BC-nZVI-CMC
Parameters of quasi-first-order and quasi-second-order kinetic models of Cr(Ⅵ) adsorption by BC-nZVI-CMC
[1] | LYU H, ZHAO H, TANG J, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite[J]. Chemosphere, 2018, 194: 360-369. doi: 10.1016/j.chemosphere.2017.11.182 |
[2] | NICKENS K P, PATIERNO S R, CERYAK S. Chromium genotoxicity: A double-edged sword[J]. Chemical Biology Interact, 2010, 188(2): 276-288. doi: 10.1016/j.cbi.2010.04.018 |
[3] | XIAO R, WANG J J, LI R H, et al. Enhanced sorption of hexavalent chromium Cr(VI) from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite[J]. Chemosphere, 2018, 208: 408-416. doi: 10.1016/j.chemosphere.2018.05.175 |
[4] | WU B, PENG D H, HOU S Y, et al. Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron[J]. Environmental Pollution, 2018, 240: 717-724. doi: 10.1016/j.envpol.2018.04.099 |
[5] | QIU X Q, FANG Z Q, YAN X M, et al. Emergency remediation of simulated chromium (VI)-polluted river by nanoscale zero-valent iron: Laboratory study and numerical simulation[J]. Chemical Engineering Journal, 2012, 193-194(25): 358-365. |
[6] | GU P, ZHANG S, LI X, et al. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution[J]. Environmental Pollution, 2018, 240: 493-505. doi: 10.1016/j.envpol.2018.04.136 |
[7] | SUN J T, ZHANG Z P, JI J, et al. Removal of Cr6+ from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchical porous carbon derived from silkworm cocoon[J]. Applied Surface Science, 2017, 405: 372-379. doi: 10.1016/j.apsusc.2017.02.044 |
[8] | ZHANG W, ZHANG S L, WANG J, et al. Hybrid functionalized chitosan-Al2O3@SiO2 composite for enhanced Cr(VI) adsorption[J]. Chemosphere, 2018, 203: 188-198. doi: 10.1016/j.chemosphere.2018.03.188 |
[9] | ZHU S S, HUANG X C, WANG D W, et al. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential[J]. Chemosphere, 2018, 207: 50-59. doi: 10.1016/j.chemosphere.2018.05.046 |
[10] | XUE W J, HUANG D L, ZENG G M, et al. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review[J]. Chemosphere, 2018, 210: 1145-1156. doi: 10.1016/j.chemosphere.2018.07.118 |
[11] | XIE Y K, DONG H R, ZENG G M, et al. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review[J]. Journal of Hazardous Materials, 2017, 321: 390-407. doi: 10.1016/j.jhazmat.2016.09.028 |
[12] | DONG H, DENG J, XIE Y, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86. doi: 10.1016/j.jhazmat.2017.03.002 |
[13] | ZHAO X, LIU W, CAI Z Q, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J]. Water Research, 2016, 100: 245-266. doi: 10.1016/j.watres.2016.05.019 |
[14] | AMBIKA S, NAMBI I M, SENTHILNATHAN J. Low temperature synthesis of highly stable and reusable CMC-Fe2+(-nZVI) catalyst for the elimination of organic pollutants[J]. Chemical Engineering Journal, 2016, 289: 544-553. doi: 10.1016/j.cej.2015.12.063 |
[15] | 奚旦立, 孙裕生, 刘秀英. 环境监测[M]. 北京: 高等教育出版社, 2003. |
[16] | ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152(1): 538-542. |
[17] | QIAN L B, ZHANG W Y, YAN J C, et al. Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures[J]. Bioresource Technology, 2016, 206: 217-224. doi: 10.1016/j.biortech.2016.01.065 |
[18] | RONGBING F, YINGPIN Y, ZHEN X, et al. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI)[J]. Chemosphere, 2015, 138: 726-734. doi: 10.1016/j.chemosphere.2015.07.051 |
[19] | QIAN L B, ZHANG W Y, YAN J C, et al. Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal[J]. Environmental Pollution, 2017, 223: 153-160. doi: 10.1016/j.envpol.2016.12.077 |
[20] | DONG H R, ZHAO F, HE Q, et al. Physicochemical transformation of carboxymethyl cellulose-coated zero-valent iron nanoparticles (nZVI) in simulated groundwater under anaerobic conditions[J]. Separation & Purification Technology, 2017, 175: 376-383. |
[21] | QIAN L B, CHEN B L. Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles[J]. Environmental Science & Technology, 2013, 47(15): 8759-8768. |
[22] | YAN J, HAN L, GAO W, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175: 269-274. doi: 10.1016/j.biortech.2014.10.103 |
[23] | 刘勇, 黄超, 翁秀兰, 等. 绿色合成纳米铁去除水中铬离子[J]. 环境工程学报, 2016, 10(8): 4118-4124. doi: 10.12030/j.cjee.201601146 |
[24] | WANG T, JIN X Y, CHEN Z L, et al. Greensynthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater[J]. Science of the Total Environment, 2014, 466-467: 210-213. doi: 10.1016/j.scitotenv.2013.07.022 |
[25] | SU H J, FANG Z Q, TSANG P E, et al. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2016, 214: 94-100. doi: 10.1016/j.envpol.2016.03.072 |
[26] | 薛嵩, 钱林波, 晏井春, 等. 生物炭携载纳米零价铁对溶液中Cr(VI) 的去除[J]. 环境工程学报, 2016, 10(6): 2895-2901. doi: 10.12030/j.cjee.201501155 |
[27] | WANG Y, HONG C S. Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspensions[J]. Water Research, 1999, 33(9): 2031-2036. doi: 10.1016/S0043-1354(98)00436-9 |
[28] | GUO N, LIANG Y M, LAN S, et al. Uniform TiO2-SiO2 hollow nanospheres: Synthesis, characterization and enhanced adsorption-photodegradation of azo dyes and phenol[J]. Applied Surface Science, 2014, 305(12): 562-574. |
[29] | ZAHEER K, THABAITI A L, SHAEEL A, et al. Nanoscale water soluble self-assembled zero-valent iron: Role of stabilizers in their morphology[J]. Research Advances, 2016, 9(6): 7267-7278. |
[30] | JANG I, YOU K E, KIM Y C, et al. Surfactant-assisted preparation of core-shell-type TiO2-Fe2O3 composites and their photocatalytic activities under room light irradiation[J]. Applied Surface Science, 2014, 316: 187-193. doi: 10.1016/j.apsusc.2014.07.204 |
[31] | LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water research, 2012, 46(3): 854-862. doi: 10.1016/j.watres.2011.11.058 |
[32] | LI M, LIU Q, GUO L J, et al. Cu(II) removal from aqueous solution by Spartina alterniflora derived biochar[J]. Bioresource Technology, 2013, 141: 83-88. doi: 10.1016/j.biortech.2012.12.096 |