4.成都环境创新科技有限公司,成都 610000
1.Chengdu Drainage Co. Ltd., Chengdu 610000, China
2.Chengdu Environment Group Co. Ltd., Chengdu 610000, China
3.Chengdu Xingrong Renewable Energy Co. Ltd., Chengdu 610000, China
4.Chengdu Environmental Innovation Technology Co. Ltd., Chengdu 610000, China
近年来,在各种膜处理技术中,用于废水或活性污泥混合液粗滤的自形成动态生物滤网(DMf)受到广泛关注。基于此,提出了一种用于估算合适的筛孔孔径的模拟方法,来预测并控制生物滤饼层在筛孔表面的形成,以提高过滤效果并减轻污染。结果表明:动态生物滤网面密度与EPS浓度之间具有显著的正相关性,可以利用滤网面密度来预测胞外聚合物(EPS)产生量;孔径为55~100 μm的筛网上形成的动态生物滤网可以阻挡泥水混合液中的大多数颗粒,但有部分细小颗粒仍可穿过滤网表层,并在滤网底层积累,从而产生EPS。CLSM分析结果表明,DMf中死细胞的比例及其厚度与网孔孔径显著相关,且在所有实验用的DMf中的活细胞层的厚度均约为20 μm。这表明有效的氧气渗透仅发生在DMf的薄层内,过厚的生物层会阻止氧气的渗透,进而导致微生物死亡而释放更多的EPS,最终加剧膜污染。
In recent years, the self-forming dynamic mesh filter (DMf) for the macro-filtration of wastewater or activated sludge mixed-liquors has been extensively studied in various membrane treatment technologies. This study developed a simulation method for estimating the appropriate mesh size to predict and control the formation of the bio-cake layer on the mesh surface, which can enhance filtration effect and reduce fouling. The results showed that there was a significant correlation between the bio-cake planar densities and EPS concentration. The planar densities could be used to predict EPS yield. The DMf formed on the meshes with an aperture of 55~100 μm could block most particles in the sludge mixture, but some of the fine particles could still pass through its surface layer, and accumulated at the bottom of the DMf to produce EPS. CLSM analysis showed that the proportion of dead cells in the bio-cake and their thickness were closely related to mesh pore size, and the thickness of live cake layer (LCL) on the four meshes were approximately 20 μm, indicating that effective oxygen penetration only occurred in the thin layer of DMf, too thick layer will prevent the penetration of oxygen, which could lead to the death of microorganisms, more EPS release, and eventually exacerbated membrane fouling.
.
Schematic of the laboratory-scale DMf system and plan-view of the aerobic chamber
不同孔径筛网下,预测的EPS产率、实测EPS产量、经过15次反冲洗后生物滤饼的面密度之间的关系
Relationship among the predicted EPS production rate, measured EPS concentration and bio-cake planar densities after 15 operation cycles on meshes with different pore sizes
Changes of SS and TMP in effluent at different pore sizes
) after 15 operation cycles of the DMf system at various mesh pore sizes
不同孔径下活性饼层(绿色)与死饼层(红色)在动态生物滤网上的分布
Distribution of live (green) and dead cake layer (red) on DMf at various mesh pore sizes
[1] | MENG F, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material[J]. Water Research, 2009, 43(6): 1489-1512. doi: 10.1016/j.watres.2008.12.044 |
[2] | PEARCE G. Introduction to membranes - MBRs: Manufacturers’ comparison: Part I. Filtration and separation[J]. Filtration & Separation, 2008, 45(4): 23-25. |
[3] | LESJEAN B, TAZI-PAIN A, THAURE D, et al. Ten persistent myths and the realities of membrane bioreactor technology for municipal applications[J]. Water Science & Technology, 2011, 63(1): 32-39. |
[4] | DOYEN W, MUES W, MOLENBERGHS B, et al. Spacer fabric supported flat-sheet membranes: A new era of flat-sheet membrane technology[J]. Desalination, 2010, 250(3): 1078-1082. doi: 10.1016/j.desal.2009.09.112 |
[5] | MENG F, ZHANG S, OH Y, et al. Fouling in membrane bioreactors: An updated review[J]. Water Research, 2017, 114: 151-180. doi: 10.1016/j.watres.2017.02.006 |
[6] | LE-CLECH P, CHEN V, FANE T A G. Fouling in membrane bioreactors used in wastewater treatment[J]. Journal of Membrane Science, 2006, 284(1/2): 17-53. |
[7] | FAN B, HUANG X. Characteristics of a self-forming dynamic membrane coupled with bioreactor for municipal wastewater treatment[J]. Environmental Science & Technology, 2002, 36(23): 5245-5251. |
[8] | FUCHS W, RESCH C, KERNSTOCK M, et al. Influence of operational conditions on the performance of a mesh filter activated sludge process[J]. Water Research, 2005, 39(5): 803-810. doi: 10.1016/j.watres.2004.12.001 |
[9] | AN Y, WANG Z, WU Z, et al. Characterization of membrane foulants in an anaerobic non-woven fabric membrane bioreactor for municipal wastewater treatment[J]. Chemical Engineering Journal, 2009, 155(3): 709-715. doi: 10.1016/j.cej.2009.09.003 |
[10] | LIU H, YANG C, PU W, et al. Formation mechanism and structure of dynamic membrane in the dynamic membrane bioreactor[J]. Chemical Engineering Journal, 2009, 148(2/3): 290-295. |
[11] | REN X, SHON H K, JANG N, et al. Novel membrane bioreactor (MBR) coupled with a nonwoven fabric filter for household wastewater treatment[J]. Water Research, 2010, 44(3): 751-760. doi: 10.1016/j.watres.2009.10.013 |
[12] | LODERER C, W?RLE A, FUCHS W. Influence of different mesh filter module configurations on effluent quality and long-term filtration performance[J]. Environmental Science & Technology, 2012, 46(7): 3844-3850. |
[13] | ERSAHIN M, OZGUN H, TAO Y, et al. Applicability of dynamic membrane technology in anaerobic membrane bioreactors[J]. Water Research, 2014, 48(1): 420-429. |
[14] | ROEST K, DAAMEN B, DE GRAAFF M S, et al. Energy production from wastewater: Dynamic filtration of A-stage sludge[J]. IWA world congress on water climate and energy, 2012, Ireland. |
[15] | 程刚, 朱雷, 许颖, 等. 厌氧动态膜生物反应器中动态膜形成及其运行周期的影响因素分析[J]. 环境工程学报, 2018, 12(5): 1408-1415. doi: 10.12030/j.cjee.201710155 |
[16] | BAI P, WANG J, CHEN G H. A real trial of a long-term non-fouling membrane bioreactor for saline sewage treatment[J]. Water Science & Technology, 2011, 63(7): 1519-1523. |
[17] | 涂凌波, 黄怡然, 王冰洁, 等. 玻纤管动态膜生物反应器短程硝化反硝化去除污染物[J]. 环境工程学报, 2018, 12(6): 1629-1636. doi: 10.12030/j.cjee.201711161 |
[18] | ZHANG J, CHUA H C, ZHOU J, et al. Factors affecting the membrane performance in submerged membrane bioreactors[J]. Journal of Membrane Science, 2006, 284(1/2): 54-66. |
[19] | 洪俊明, 尹娟, 卢芳芳. 膜基材对动态膜生物反应器性能的影响研究[J]. 环境工程学报, 2011, 5(2): 73-76. |
[20] | FREDERICK M R, KUTTLER C, HENSE B A, et al. A mathematical model of quorum sensing regulated EPS production in biofilm communities[J]. Theoretical Biology and Medical Modelling, 2011, 8(1): 8-29. doi: 10.1186/1742-4682-8-8 |
[21] | YEON K M, LEE C H, KIM J. Magnetic enzyme carrier for effective biofouling control in the membrane bioreactor based on enzymatic quorum quenching[J]. Environmental Science & Technology, 2009, 43(19): 7403-7409. |
[22] | FANE A G, FELL C J D, NOR M T. Ultrafiltration activated sludge system-development of a predictive model[J]. Polymer Science and Technology, 1981, 13: 631-658. |
[23] | CHANG I S, BAG S O, LEE C H. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge[J]. Process Biochemistry, 2001, 36(8/9): 855-860. |
[24] | JIANG F, LEUNG D H, LI S Y, et al. A biofilm model for prediction of pollutant transformation in sewers[J]. Water Research, 2009, 43(13): 3187-3198. doi: 10.1016/j.watres.2009.04.043 |