2.肇庆学院环境与化学工程学院,肇庆 526061
1.College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
2.School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
当前生物炭的制备主要依赖以电力为热源的传统热解方式,存在能耗高、污染大等问题,在一定程度上限制了生物炭作为吸附材料在工业水处理领域中的应用。为寻求生物炭制备的新途径,以玉米秸秆、牛粪为原料,采用太阳能热解技术制备生物炭,并与传统热解方式制备的生物炭进行了比较,考察了两者在理化性质和吸附性能上的差异。结果表明,经不同热解工艺所制备的相同生物炭材料的比表面积和微观形貌基本相同,理化性质相似。其中:玉米秸秆生物炭在最佳pH=6的条件下对Cu
的吸附符合Freundlich等温吸附模型,两者均符合准二级动力学模型。综合上述结果,太阳能热解技术作为制备生物炭材料的新工艺,其制备的生物炭材料可成功应用于水中重金属离子的去除。
At present, the preparation of biochar mainly relies on the traditional pyrolysis with electric power as the heat source, which has disadvantages such as high energy consumption and heavy pollution, to a certain extent limiting its application as adsorption material in the field of industrial water treatment. In order to find new way to make biochar, corn straw and diary manure were taken as raw materials, solar pyrolysis was used as heat source for biochar preparation. Compared with biochar prepared by traditional pyrolysis way, the differences in physicochemical properties and adsorption capacity of these two types of biochar were explored. The result showed that two types of biochar prepared by the same raw materials and different pyrolysis process had the basically same specific surface area and microscopic morphology, and similar physical and chemical properties. Of which the adsorption of Cu
by corn straw biochar at the optimum pH of 6 fitted well with Langmuir model, and its maximum sorption capacity was about 25.87 mg·g
by dairy manure biochar fitted well with Freundlich model. The sorption kinetics of Cu
on both types of biochar followed pseudo second order kinetic model. This experiment showed that solar pyrolysis technology was a new process for preparing biochar materials, and the biochar materials prepared by it could be successfully used in the treatment of heavy metal ions in water.
.
Solar pyrolysis device
TG and DTG curves of biomass
太阳能热解制备生物炭过程中辐射强度及反应器内温度变化
Variation of solar radiation and temperature in the reactor during the biochar preparation by solar pyrolysis
SEM images of biomass before and after different pyrolysis processes
adsorption-desorption curve of biochar
FT-IR spectra of biomass and biochar
Effect of solution pH on adsorption effect
in aqueous solution by biochar
[1] | 陈贵英, 李维, 陈顺德, 等. 环境铜污染影响及修复的研究现状综述[J]. 绿色科技, 2011, 1(12): 125-128. doi: 10.3969/j.issn.1674-9944.2011.12.059 |
[2] | 邹照华, 何素芳, 韩彩芸, 等. 吸附法处理重金属废水研究进展[J]. 环境保护科学, 2010, 36(3): 35-39. doi: 10.3969/j.issn.1004-6216.2010.03.012 |
[3] | TAN X, LIU Y, ZENG G, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125(4): 70-85. |
[4] | MANYà J J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs[J]. Environmental Science & Technology, 2012, 46(15): 7939-7954. |
[5] | ROBERTS K G, GLOY B A, JOSEPH S, et al. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential[J]. Environmental Science & Technology, 2010, 44(2): 827-833. |
[6] | ZENG K, GAUTHIER D, SORIA J, et al. Solar pyrolysis of carbonaceous feedstocks: A review[J]. Solar Energy, 2017, 156(11): 73-92. |
[7] | MORALES S, MIRANDA R, BUSTOS D, et al. Solar biomass pyrolysis for the production of bio-fuels and chemical commodities[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109(9): 65-78. |
[8] | 林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 2016, 10(6): 3200-3206. doi: 10.12030/j.cjee.201501107 |
[9] | KO?ODY?SKA D, WN?TRZAK R, LEAHY J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal[J]. Chemical Engineering Journal, 2012, 197(1): 295-305. |
[10] | QUAN C, GAO N B, SONG Q B. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121(1): 84-92. |
[11] | 朱锡锋, 陆强, 郑冀鲁, 等. 生物质热解与生物油的特性研究[J]. 太阳能学报, 2006, 27(12): 1285-1289. doi: 10.3321/j.issn:0254-0096.2006.12.018 |
[12] | DHYANI V, BHASKAR T. A comprehensive review on the pyrolysis of lignocellulosic biomass[J]. Renewable Energy, 2018, 129(5): 695-716. |
[13] | SHINOGI Y, KANRI Y. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products[J]. Bioresource Technology, 2003, 90(3): 241-247. doi: 10.1016/S0960-8524(03)00147-0 |
[14] | CHANG K, ZHANG Q Y. Improvement of the hourly global solar model and solar radiation for air-conditioning design in China[J]. Renewable Energy, 2019, 138(6): 1232-1238. |
[15] | LIAN F, HUANG F, CHEN W, et al. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems[J]. Environmental Pollution, 2011, 159(4): 850-857. doi: 10.1016/j.envpol.2011.01.002 |
[16] | CAO X D, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5222-5228. doi: 10.1016/j.biortech.2010.02.052 |
[17] | CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107(1): 419-428. |
[18] | CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137-5143. |
[19] | BRUUN E W, AMBUS P, EGSGAARD H, et al. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics[J]. Soil Biology and Biochemistry, 2012, 46(1): 73-79. |
[20] | CAO X D, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9): 3285-3291. |
[21] | XIAO R, YANG W. Influence of temperature on organic structure of biomass pyrolysis products[J]. Renewable Energy, 2013, 50(1): 136-141. |
[22] | PENG H B, GAO P, CHU G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229(1): 846-853. |
[23] | 李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb(Ⅱ)、Cd(Ⅱ)的吸附[J]. 农业环境科学学报, 2015, 34(5): 45-48. |
[24] | LIN D C, SHI M, ZHANG Y M, et al. 3D crateriform and honeycomb polymer capsule with nano re-entrant and screen mesh structures for the removal of Multi-component cationic dyes from water[J]. Chemical Engineering Journal, 2019, 375(1): 119-121. |
[25] | TONG X J, LI J Y, YUAN J H, et al. Adsorption of Cu(II) by biochars generated from three crop straws[J]. Chemical Engineering Journal, 2011, 172(2/3): 828-834. |
[26] | CHEN X C, CHEN G C, CHEN L G, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884. doi: 10.1016/j.biortech.2011.06.078 |
[27] | 安增莉, 侯艳伟, 蔡超, 等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J]. 环境化学, 2011, 30(11): 1851-1857. |
[28] | XU X Y, CAO X D, ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research, 2013, 20(1): 358-368. doi: 10.1007/s11356-012-0873-5 |
[29] | SONG J, HE Q, HU X, et al. Highly efficient removal of Cr(VI) and Cu(II) by biochar derived from Artemisia argyi stem[J]. Environmental Science and Pollution Research, 2019, 26(13): 13221-13234. doi: 10.1007/s11356-019-04863-2 |
[30] | FANG C, ZHANG T, LI P, et al. Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater[J]. International Journal of Environmental Research and Public Health, 2014, 11(9): 9217-9237. doi: 10.3390/ijerph110909217 |
[31] | JIAN X, ZHUANG X, LI B, et al. Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis[J]. Environmental Technology & Innovation, 2018, 10(2): 27-35. |
[32] | AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2013, 99(3): 19-33. |
[33] | CHEN Z L, ZHANG J Q, HUANG L, et al. Removal of Cd and Pb with biochar made from dairy manure at low temperature[J]. Journal of Integrative Agriculture, 2019, 18(1): 201-210. doi: 10.1016/S2095-3119(18)61987-2 |
[34] | WANG X S, MIAO H H, HE W, et al. Competitive adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue derived black carbon[J]. Journal of Chemical & Engineering Data, 2011, 56(3): 444-449. |
[35] | HARVEY O R, HERBERT B E, RHUE R D, et al. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry[J]. Environmental Science & Technology, 2011, 45(13): 5550-5556. |
[36] | JALAYERI H, PEPE F. Novel and high-performance biochar derived from pistachio green hull biomass: Production, characterization, and application to Cu(II) removal from aqueous solutions[J]. Ecotoxicology and Environmental Safety, 2019, 168(1): 64-71. |
[37] | KING P, RAKESH S, BEENA L, et al. Biosorption of zinc onto Syzygium cumini L.: Equilibrium and kinetic studies[J]. Chemical Engineering Journal, 2008, 144(2): 181-187. doi: 10.1016/j.cej.2008.01.019 |