3.北京林业大学理学院,北京 100083
1.State Key Laboratory of Environmental Aquatic Chemistry, Center for Ecological and Environmental Research, Chinese Academy of Sciences, Beijing 100085, China
3.School of Science, Beijing Forestry University, Beijing 100083, China
水源事故的频发会对城市供水系统产生威胁,有必要针对供水系统风险进行评估和防控。针对水源事故频发及高发因素定量甄别研究,筛选统计了国内近20年来1 900多起水质突发事故案例,梳理了触发水源水质污染的多种因素,通过构建水源水质安全事故树和贝叶斯网络进行了相互验证分析。结果表明:我国水源污染事故主要因素贡献为依次突然排放(0.466)、污染长期累积(0.242)、交通事故(0.109)等;采用贝叶斯网络计算进行验证,其结果与事故树方法一致性较好。该方法有助于水源污染防控工作中风险点甄别和排序,可为我国饮用水安全保障水平的提升提供支撑。
With the development of China’s economy in the past ten years, water accidents have occurred frequently, which is a certain degree of threat to the urban water supply system. Therefore, it is necessary to evaluate, prevent and control the risks of the water supply system. According to the quantitative screening research on frequent and high-incidence factors of water source accidents, more than 1900 water quality accidents in the past 20 years have been screened in China, and various factors that triggered water quality pollution have been sorted out, and the mutual analysis was conducted through the construction of fault tree analysis and Bayes networks. The results reveal that the main factors contributing to water pollution accidents in China were sudden discharge (0.466), long-term accumulation of pollution (0.242), and traffic accidents (0.109). The Bayesian network method has been utilized for verification, and the results are in good agreement with the fault tree analysis. The methods are helpful for the identification and ordering of causation points in the prevention and control of water pollution, and can provide support for improving the level of drinking water safety in China.
.
Water source fault tree
Water source Bayesian network
[1] | 马铁焰. 紫坪铺水库突发性水污染事故预警应急系统[J]. 中国西部科技, 2010, 27(9): 12-13. |
[2] | HU J, CHU J Y, LIU J H, et al. Risk identification of sudden water pollution on fuzzy fault tree in Beibu-Gulf economic zone[J]. Procedia Environmental Sciences, 2011, 10(Part C): 2413-2419. |
[3] | TEN VELDHUIS J A E, CLEMENS F H L R, VAN GELDER P H A J M. Quantitative fault tree analysis for urban water infrastructure flooding[J]. Structure and Infrastructure Engineering, 2011, 7: 809-821. doi: 10.1080/15732470902985876 |
[4] | 杨娅, 马俊伟, 刘仁志. 上海市突发环境事件时空格局及影响因素分析[J]. 中国人口·资源与环境, 2012, 22(S1): 105-109. |
[5] | MAHMOOD Y A, AHMADI A, VERMA A K, et al. Fuzzy fault tree analysis: A review of concept and application[J]. International Journal of Systems Assurance Engineering and Management, 2013, 4(1): 19-32. doi: 10.1007/s13198-013-0145-x |
[6] | 滕洪辉, 王继库. 基于事故树的城市二次供水水质污染风险分析[J]. 安全与环境工程, 2013, 20(3): 69-72. doi: 10.3969/j.issn.1671-1556.2013.03.016 |
[7] | DING L, DU B, LUO G, et al. Adsorption of bromate from emergently polluted raw water using MIEX resin: Equilibrium, kinetic, and thermodynamic modeling studies[J]. Desalination and Water Treatment, 2015, 56(8): 2193-2205. doi: 10.1080/19443994.2014.958763 |
[8] | TAHERIYOUN M, MORADIEJAD S. Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation[J]. Environmental Monitoring and Assessment, 2015, 187: 4186. doi: 10.1007/s10661-014-4186-7 |
[9] | TANG C, YI Y, YANG Z, et al. Risk forecasting of pollution accidents based on an integrated Bayesian Network and water quality model for the South to North Water Transfer Project[J]. Ecological Engineering, 2016, 96: 109-116. doi: 10.1016/j.ecoleng.2015.11.024 |
[10] | MAKAJIC-NIKOLIC D, PETROVIC N, BELIC A, et al. The fault tree analysis of infectious medical waste management[J]. Journal of Cleaner Production, 2016, 113: 365-373. doi: 10.1016/j.jclepro.2015.11.022 |
[11] | HUANG W, FAN H, QIU Y, et al. Causation mechanism analysis for haze pollution related to vehicle emission in Guangzhou, China by employing the fault tree approach[J]. Chemosphere, 2016, 151: 9-16. doi: 10.1016/j.chemosphere.2016.02.024 |
[12] | LONG Y, XU G, MA C, et al. Emergency control system based on the analytical hierarchy process and coordinated development degree model for sudden water pollution accidents in the Middle Route of the South-to-North Water Transfer Project in China[J]. Environmental Science and Pollution Research, 2016, 23: 12332-12342. doi: 10.1007/s11356-016-6448-0 |
[13] | 王浩, 郑和震, 雷晓辉, 等. 南水北调中线干线水质安全应急调控与处置关键技术研究[J]. 四川大学学报(工程科学版), 2016, 48(2): 1-6. |
[14] | 沈园, 谭立波, 单鹏, 等. 松花江流域沿江重点监控企业水环境潜在污染风险分析[J]. 生态学报, 2016, 36(9): 2732-2739. |
[15] | ZHENG H, SHANG Y, DUAN Y, et al. Sudden water pollution accidents and reservoir emergency operations: Impact analysis at Danjiangkou Reservoir[J]. Environmental Technology, 2018, 39(8): 787-803. |
[16] | 冯庚, 张楠, 陈猛志, 等. 事故树分析与贝叶斯网络重要度在溃坝风险分析中的应用[J]. 水电能源科学, 2013, 31(4): 66-68. |
[17] | 王洪德. 用事故树法分析矿井内因火灾引起CO中毒事故[J]. 辽宁工学院学报, 2002, 22(3): 26-28. |
[18] | 王显政. 新编安全评价手册[M]. 北京: 煤炭工业出版社, 2005. |
[19] | KAISER B, GRAMLICH C, FORSTER M. State/event fault trees: A safety analysis model for software-controlled systems[J]. Reliability Engineering and System Safety, 2007, 92(11): 1521-1537. doi: 10.1016/j.ress.2006.10.010 |
[20] | CHEN Y, LI J, LU H, et al. The dynamic benefit compensation in a multi-reservoir system based on importance analysis[J]. Journal of Cleaner Production, 2020, 249: 119402. doi: 10.1016/j.jclepro.2019.119402 |
[21] | SAEIDI-MOBARAKEH Z, TAVAKKOLI-MOGHADDAM R, NAVABAKHSH M, et al. A bi-level and robust optimization-based framework for a hazardous waste management problem: A real-world application[J]. Journal of Cleaner Production, 2020, 252: 119830. doi: 10.1016/j.jclepro.2019.119830 |
[22] | 许静, 王永桂, 陈岩, 等. 中国突发水污染事件时空分布特征[J]. 中国环境科学, 2018, 38(12): 4566-4575. doi: 10.3969/j.issn.1000-6923.2018.12.022 |
[23] | BABAEI M, ROOZBAHANI A S, SHAHDANY M H. Risk assessment of agricultural water conveyance and delivery systems by fuzzy fault tree analysis method[J]. Water Resources Management, 2018, 32(12): 4079-4101. doi: 10.1007/s11269-018-2042-1 |
[24] | BORYCZKO K, BARTOSZEK L, KOSZELNIK P, et al. A new concept for risk analysis relating to the degradation of water reservoirs[J]. Environmental Science and Pollution Research, 2018, 25: 25591-25599. doi: 10.1007/s11356-018-2634-6 |
[25] | TABESH M, ROOZBAHANI A, ROGHANI B, et al. Risk assessment of factors influencing non-revenue water using Bayesian networks and fuzzy logic[J]. Water Resources Management, 2018, 32(11): 3647-3670. doi: 10.1007/s11269-018-2011-8 |
[26] | 孙惠娟, 沈建. 突发性水污染预警应急系统解析[J]. 决策探索, 2018(5): 88-89. doi: 10.3969/j.issn.1003-5419.2018.05.042 |
[27] | WANG F, ZHENG P, DAI J, et al. Fault tree analysis of the causes of urban smog events associated with vehicle exhaust emissions: A case study in Jinan, China[J]. Science of the Total Environment, 2019, 668: 245-253. doi: 10.1016/j.scitotenv.2019.02.348 |
[28] | PIETRUCHA-URBANIK K, STUDZINSKI A. Qualitative analysis of the failure risk of water pipes in terms of water supply safety[J]. Engineering Failure Analysis, 2019, 95: 371-378. doi: 10.1016/j.engfailanal.2018.09.008 |
[29] | GACHLOU M, ROOZBAHANI A, BANIHABIB M E. Comprehensive risk assessment of river basins using fault tree analysis[J]. Journal of Hydrology, 2019, 577: 123974. doi: 10.1016/j.jhydrol.2019.123974 |
[30] | 李思琪, 伦艺宁, 刘一凡, 等. 基于事故树分析法的营运客车翻车事故分析[J]. 价值工程, 2019, 38(9): 63-65. |
[31] | 韩明毅, 安伟, 桑晨惠, 等. 基于浊度与颗粒数关系的饮用水中“两虫”去除率预测模型[J]. 给水排水, 2019, 45(5): 134-140. |
[32] | 韩明毅, 安伟, 马金锋, 等. 人畜共患贾第鞭毛虫和隐孢子虫国内研究进展[J]. 中国病原生物学杂志, 2019, 14(5): 614-622. |