昆明理工大学环境科学与工程学院,昆明 650500
Faculty of Environmental Science And Engineering, Kunming University of Science and Technology, Kunming 650500, China
随着磁场技术不断发展以及对其研究的深入,磁场已被越来越多应用于环境污染治理领域。总结磁场在废气脱硫脱硝和脱汞方面的研究进展,着重叙述和探讨了磁场对催化氧化二氧化硫、氮氧化物和汞这3种气体污染物的影响机制与去除机理。现有研究表明,外加磁场受顺磁逆磁材料、磁场种类、强度和气体组分的影响。一方面,磁场能够改善吸附剂传质性能、促进自由基和中间产物生成速率、控制自由基对的系间跃迁、抑制单重态自由基对的重结合、提高催化活性,而使有效反应温度降低;另一方面,磁化力增强了运输效应和化学吸附,且磁场与磁性催化剂具有协同作用,可造成局部磁场叠加,形成微小磁场源,从而促进顺磁性组分氧化,还可将逆磁性反应物转化为顺磁性产物,加速反应中的电子传递、增强反应物质在磁性位点的上活化,最终促进反应进行:磁场技术可为工业废气中气体污染物的去除提供新思路。
With the continuous development of magnetic field technology and the deepening of its research, magnetic field has been more and more applied in the field of environmental pollution control. In this paper, it summarizes the research progress of magnetic field in gas desulfurization, denitrification and mercury removal, especially the properties of magnetic field affects the removal mechanism of sulfur dioxide, nitrogen oxide and mercury. Affected by paramagnetic and diamagnetic materials, magnetic field types, intensities and gas components, the results show that the applied magnetic field can improve the mass transfer performance of adsorbent, promote the formation rate of free radicals and intermediates, control the transition between free radicals, inhibit the recombination of singlet free radicals, improve the catalytic activity, and reduce the effective reaction temperature. Magnetizing force on the other hand enhances transport effect and chemical adsorption, thereby the magnetic field and magnetic catalysts have synergy, it can cause local magnetic field superposition and form small magnetic field source. Not only promote the oxidation of paramagnetic component, but also convert diamagnetism reactant to paramagnetic products, accelerate the electron transfer reactions, enhance reaction material on the site of magnetic activated, thus promote the reaction. The magnetic field technique introduced in this paper provides a new idea for the removal of gaseous pollutants from industrial waste gas.
.
FDG Experimental flow chart
有无磁场影响的单个铁磁粒子表面液膜传质过程的比较
Comparison of individual ferromagnetic particles surface film mass transfer process with magnetic field or not
External magnetic field of magnetic particles
[1] | SILVA R A, ROGERS K, BUCKLEY T J. Advancing environmental epidemiology to assess the beneficial influence of the natural environment on human health and well-being[J]. Environmental Science & Technology, 2018, 52(17): 9545-9555. |
[2] | 徐海军, 何新秀, 曾英. 富氧尾气中NOx催化净化的研究进展[J]. 环境工程学报, 2002, 3(4): 29-33. doi: 10.3969/j.issn.1673-9108.2002.04.007 |
[3] | RODGERS C T. Magnetic field effects in chemical systems[J]. Pure and Applied Chemistry, 2009, 81(1): 19-43. doi: 10.1351/PAC-CON-08-10-18 |
[4] | HENBEST K B, KUKURA P, RODERS C T, et al. Radio frequency magnetic field effects on a radical recombination reaction: A diagnostic test for the radical pair mechanism[J]. Journal of the American Chemical Society, 2004, 126(26): 8102-8103. doi: 10.1021/ja048220q |
[5] | MIURA T, MAEDA K, ARAI T. The spin mixing process of a radical pair in low magnetic field observed by transient absorption detected nanosecond pulsed magnetic field effect[J]. Journal of Physical Chemistry A, 2006, 110(12): 4151-4156. doi: 10.1021/jp056488d |
[6] | 李志华, 钟云波, 任忠鸣, 等. 各向异性纳米铁氧体磁性材料的制备[J]. 上海金属, 2006, 28(1): 53-626. doi: 10.3969/j.issn.1001-7208.2006.01.011 |
[7] | WANG L B, ZHONG C W, WAKAYAMA N I. Damping of natural convection in the aqueous protein solutions by the application of high magnetic fields[J]. Journal of Crystal Growth, 2002, 237: 312-316. |
[8] | CATALLO N, COLACICCHI S, CARNICELLI V, et al. Static magnetic field effect on the fremy's salt-ascorbic acid chemical reaction studied by continuous-wave electron paramagnetic resonance[J]. Journal of Physical Chemistry A, 2010, 114(2): 778-783. doi: 10.1021/jp906376h |
[9] | YAMAGUCHI M, TANIMOTO Y. Magneto-Science: Magnetic Field Effects on Materials: Fundamentals and Applications[M]. Berlin: Springer Berlin Heidelberg, 2007. |
[10] | 汪涛, 张典典, 王志强, 等. 磁场强化技术在污水处理中的研究进展[J]. 现代化工, 2017, 37(7): 29-33. |
[11] | 赵跃民, 李功民, 骆振福, 等. 模块式干法重介质流化床选煤理论与工业应用[J]. 煤炭学报, 2014, 39(8): 1566-1571. |
[12] | 张磊, 姚广春, 焦万丽. 磁场力对磁性杂质颗粒的作用的研究[J]. 材料导报, 2004, 8(10): 89-90. doi: 10.3321/j.issn:1005-023X.2004.10.026 |
[13] | PRAKASH K, RATIMP B. Analytical expressions of the collision frequency function for aggregation of magnetic particles[J]. Aerosol Science, 2005, 36(4): 455-469. doi: 10.1016/j.jaerosci.2004.10.008 |
[14] | ANTONIO R, GUERREIR O, VADIM K, et al. Influence of continuous magnetic field on the separation of ephedrine enantiomers by molecularly imprinted polymers[J]. Biosensors and Bioelectronics, 2008, 23(7): 1189-1194. doi: 10.1016/j.bios.2007.09.009 |
[15] | MICHELLE S, MERUVI A, JOSE A, et al. Magneticfield release of trapped chatges in poly(fluorenylenevinylene)s[J]. Organic Electronics, 2007, 8(6): 695-701. doi: 10.1016/j.orgel.2007.05.007 |
[16] | TATSUHIRO T, KAZUHITO S, HIROSHI A, et al. Alignment of vapor-grown carbon fibers in polymer under magnetic field[J]. Chemical Physics Letters, 2007, 436(4/5/6): 378-382. |
[17] | 陈凡植, 颜幼平, 康新平. 高梯度磁分离技术在环境保护中的应用[J]. 化工环保, 2000, 20(5): 11-14. doi: 10.3969/j.issn.1006-1878.2000.05.003 |
[18] | 俞明, 孙国斌, 蔡锐彬. 燃油磁化对发动机排放与节能影响的试验研究[J]. 华南理工大学学报, 2001, 29(7): 44-47. |
[19] | 朱传征, 戴立益, 杨宝林, 等. 常压下磁场对合成氨催化反应影响的研究[J]. 华东师范大学学报(自然科学版), 1998, 4(2): 51-54. |
[20] | KLIUEVA L M, ZAKHAREVICH N S. Process?of gentamycin?sorption?in liquid and solid-phase countercurrent flow[J]. Antibiotics and Medical Biotechnology, 1985, 30(8): 576-579. |
[21] | WYLOCK C, CILINET P, HAUT B. Gas absorption into a spherical liquid droplet: numerical and heoretical study[J]. Chemical Engineering & Technology, 2012, 207: 851-864. |
[22] | ZHANG Q, GUI K T. Removal of SO2 using a magnetically fluidized bed in the semi-dry flue gas desulfurization process: Roles of?ferromagnetic particles and magnetic field applied[J]. Chemical Engineering & Technology, 2008, 31(4): 537-541. |
[23] | WANG Y H, GUI K T. The determination of magnetically stabilized regions for the magnetically fluidized bed[J]. Apply Science, 2004, 19: 25-28. |
[24] | ZHANG Q, GUI K T, WANG X B. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed[J]. Heat Mass Transfer, 2016, 52(2): 331-336. doi: 10.1007/s00231-015-1555-x |
[25] | 张琦, 归柯庭, 姚桂焕, 等. 外加磁场对磁流化床烟气脱硫过程的影响[J]. 动力工程, 2008, 28(6): 940-944. |
[26] | JAE D M, GEUN T L, SUK H C. SO2 and CO gas removal and discharge characteristics of a nonthermal plasma reactor in a crossed DC magnetic field[C]//Industry Applications Conference. Conference Record of the 1997 IEEE. Los Angeles, 1997: 1198-1204. |
[27] | SOPHIE R. High steady?magnetic?field processing of functional?magnetic?materials[J]. Journal of the Minerals, Metals & Materials Society, 2013, 65(7): 901-909. |
[28] | BUSCA G, LARRUBIA G A, ARRIGHI L, et al. Catalytic abatement of NOx: Chemical and mechanistic aspects[J]. Catalysis Today, 2005, 107-108: 139-148. doi: 10.1016/j.cattod.2005.07.077 |
[29] | BUSCA G, LIETTI L, RAMIS G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental, 1998, 18(1/2): 1-36. |
[30] | RAMIS G, YI L, BUSCA G, et al. Adsorption, activation, and oxidation of ammonia over SCR catalysts[J]. Journal of Catalysis, 1995, 157(2): 523-535. doi: 10.1006/jcat.1995.1316 |
[31] | APOSTPOSCI N B, GEIGER K, HIZBULLAH, et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Applied Catalysis B: Environmental, 2006, 62(1/2): 104-114. |
[32] | LARRUBIA M A, RAMIS G, BUSCA G. An FI-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3-TiO2 SCR catalysts[J]. Applied Catalysis B: Environmental, 2001, 30(1/2): 101-110. |
[33] | YAMAZAKI K, TAKAHASHI N, SHINJOH H, et al. The performance of NOx storage-reduction catalyst containing Fe-compound after thermal aging[J]. Applied Catalysis B: Environmental, 2004, 53(1): 1-12. doi: 10.1016/j.apcatb.2004.04.010 |
[34] | YAO G H, WANG F, WAGN X B, GUI K T. Magnetic field effects on selective catalytic reduction of NO by NH3 over Fe2O3 catalyst in a magnetically fluidized bed[J]. Energy, 2010, 35(50): 2295-2300. |
[35] | WANG X F, ZHOU M F, ANDREWS L. Reactions of iron atoms with nitric oxide and carbon monoxide in excess argon: infrared spectra and density functional calculations of iron carbonyl nitrosyl complexes[J]. Journal of Physical Chemistry, 2000, 104(45): 10104-10111. doi: 10.1021/jp0006025 |
[36] | RETHWISCH D G, DUMESIC J A. Adsorptive and catalytic properties of supported metal oxides. 2. Infrared spectroscopy of nitric oxide adsorbed on supported iron oxides[J]. Journal of Physical Chemistry, 1986, 90(8): 1625-1630. doi: 10.1021/j100399a034 |
[37] | GRZYBEK T. XPS study of the interaction of ammonia and nitric oxide and active-carbon-supported iron oxides[J]. Fuel, 1993, 72(5): 619-622. doi: 10.1016/0016-2361(93)90573-K |
[38] | 张雯, 王绪绪, 林华香, 等. 磁场对光催化反应羟基自由基生成速率的影响[J]. 化学学报, 2005, 63(18): 1765-1768. doi: 10.3321/j.issn:0567-7351.2005.18.024 |
[39] | 王国全. 磁化学及其应用[J]. 化工进展, 1998, 1(1): 30-32. |
[40] | HRISTOV J, FACHIKOV L. An overview of separation by magnetically stabilized beds: State-of-the-art and potential applications[J]. China Particuology, 2007, 5(1): 11-18. |
[41] | DELBECQ F, SAUTET P. Interplay between magnetism and chemisorption: A theoretical study of CO and NO adsorption on a Pd3Mn alloy surface[J]. Chemical Physic Letters, 1999, 302(1): 91-97. |
[42] | SELWOOD P W. Magnetism and the structure of catalytically active solids[J]. Advances in Catalysis, 1951, 3: 27-106. |
[43] | OZEKI S, UCHIYAMA H. Magneto adsorption of nitric oxide on iron oxides[J]. Journal of Physic Chemistry, 1988, 92(4): 6485-6487. |
[44] | ZHANG Y, GAO J M, FENG D D, et al. Effect of magnetic field on the ammonia-based CO2 absorption process[J]. Canadian Journal of Chemical Engineering, 2018, 96(7): 1462-1467. doi: 10.1002/cjce.23138 |
[45] | KRICELLE M D, LUCIELEN O S, ALBERTO V C. Use of static magnetic fields to increase CO2 biofixation by the microalga chlorella fusca[J]. Bioresource Technology, 2019, 276: 103-109. doi: 10.1016/j.biortech.2018.12.080 |
[46] | FILIP M G, RINKLEBE J, YONG S, et al. International conference on heavy metals in the environment[J]. Chemosphere, 2017, 2(3): 94-95. |
[47] | LI J F, YAN N Q, QU Z, et al. Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures[J]. Environment Science & Technology, 2010, 44(1): 426-431. |
[48] | WANG T, LI C T, ZHAO L K, et al. The catalytic performance and characterization of ZrO2 support modification on CuO-CeO2/TiO2 catalyst for the simultaneous removal of Hg0 and NO[J]. Applied Surface Science, 2016, 400: 227-237. |
[49] | LI H L, WU S K, WU C Y, et al. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst[J]. Environment Science & Technology, 2015, 49(12): 7373-7379. |
[50] | GRANITE E J, FREEMAN M C, HARGIS R A, et al. The thief process for mercury removal from flue gas[J]. Journal of Environment Management, 2007, 84(4): 628-634. |
[51] | WU S K, LI H L, LI L Q, et al. Effects of flue-gas parameters on low temperature NO reduction over a Cu-promoted CeO2-TiO2 catalyst[J]. Fuel, 2015, 159: 876-882. doi: 10.1016/j.fuel.2015.07.031 |
[52] | YAN N Q, CHEN W M, CHEN J, et al. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas[J]. Environment Science & Technology, 2011, 45(13): 5725-5730. |
[53] | YANG S J, GUO Y F, YAN N Q, et al. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/gamma-Fe2O3 at lower temperatures[J]. Journal of Hazardous Materials, 2011, 186(1): 508-515. doi: 10.1016/j.jhazmat.2010.11.034 |
[54] | YUAN Y, ZHAO Y C, LI H L, et al. Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas[J]. Journal of Hazardous Materials, 2012, 227: 427-435. |
[55] | DOWD W J, PENNLINE H W, FREEMAN M C, et al. A technique to control mercury from flue gas: the thief process[J]. Fuel, 2006, 87(12): 1071-1084. |
[56] | LEE S H, RHIM Y J, CHO S P, et al. Carbon-based novel sorbent for removing gas-phase mercury[J]. Fuel, 2006, 85(2): 219-226. doi: 10.1016/j.fuel.2005.02.030 |
[57] | 王君, 范美青, 杨飘萍, 等. 磁性固体超强酸 ${\rm{SO}}_4^{2 - }$ /ZrO2-Al2O3-Fe3O4的制备与性能研究[J]. 无机化学学报, 2007, 23(7): 1137-1142. doi: 10.3321/j.issn:1001-4861.2007.07.002 |
[58] | DONG J, ZHENG H X, STEVEN M, et al. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents[J]. Environment Science & Technology, 2009, 43(9): 3266-327. |
[59] | YANG J P, ZHAO Y C, ZHANG J Y, et al. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas[J]. Environment Science & Technology, 2014, 48(24): 14837-14843. |
[60] | YANG J P, ZHAO Y C, ZHANG J Y, et al. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation[J]. Fuel, 2016, 164: 419-428. doi: 10.1016/j.fuel.2015.08.012 |
[61] | YANG J P, ZHAO Y C, MA S M, et al. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environment Science & Technology, 2016, 50(21): 12040-12047. |