2.兰州交通大学环境与市政工程学院,兰州 730070
1.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2.School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
工业废水“趋零排放”已成为相关水处理技术领域的目标策略。高盐废水是一种典型的工业难降废水,处理过程中存在浓缩成本较高、杂盐及有机物污染等问题。电渗析技术可以选择性分离溶解性离子,近年来已成为高盐废水实现“趋零排放”目标的热门研究技术。系统梳理了电渗析技术在高盐废水浓缩、杂盐纯化、有机物分离等方面的研究进展,并介绍了以溶解性离子选择性分离为核心的新型电渗析技术,总结了单价选择性离子交换膜、新型选择性电渗析膜堆和膜污染控制等热点研究方向的最新进展。上述综述内容可为利用电渗析技术实现高盐废水“趋零排放”提供参考,也可为相关工业废水的处理及达标排放提供技术借鉴。
There has been a focus in the water treatment field to achieving near-zero liquid discharge of industrial wastewater. High-salt wastewater is a typical industrial waste stream with high concentration cost, impurity salt and organic pollution, which is difficult to reduce. Electrodialysis has the characteristics of selective separation of dissolved ions, and becoming one potential solution to satisfying near-zero discharge of high-salt wastewater. In this paper, the research progress of electrodialysis in the fields of concentration of high-salt wastewater, purification of hybrid salts and separation of organic compounds was systematically reviewed, accompanying with comprehensive summaries in relation to emerging electrodialysis technologies with the aim of selective separation of dissolved ions. The hot research directions including monovalent selective ion exchange membrane, new selective electrodialysis membrane reactor and membrane pollution control are then summarized. This review can provide a reference for promotion in realization of near-zero discharge of high salt wastewater by electrodialysis, and also offer technical implications for the appropriate treatment and safe discharge of relevant industrial wastewater.
.
Electrodialysis process (NaCl as an example)
Phenol ionization equilibrium
[1] | CUI Y, PENG C, PENG Y, et al. Effects of salt on microbial populations and treatment performance in purifying saline sewage using the MUCT Process[J]. Clean, 2009, 37(8): 649-656. |
[2] | LEFEBVRE O, MOLETTA R. Treatment of organic pollution in industrial saline wastewater: A literature review[J]. Water Research, 2006, 40(20): 3671-3682. doi: 10.1016/j.watres.2006.08.027 |
[3] | 颜海洋, 汪耀明, 蒋晨啸, 等. 离子膜电渗析在高盐废水“零排放”中的应用、机遇与挑战[J]. 化工进展, 2019, 38(1): 672-681. |
[4] | MUHAMMAD Y, LEE W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review[J]. Science of the Total Environment, 2019, 681: 551-563. doi: 10.1016/j.scitotenv.2019.05.062 |
[5] | BYERS B. Zero discharge: A systematic approach to water reuse[J]. Chemical Engineering, 1995, 102(7): 96-100. |
[6] | TONG T, ELIMELECH M. The global rise of zero liquid discharge for wastewater management: Drivers, technologies, and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855. |
[7] | DAHMARDEH H, AKHLAGHI AMIRI H A, NOWEE S M. Evaluation of mechanical vapor recompression crystallization process for treatment of high salinity wastewater[J]. Chemical Engineering and Processing- Process Intensification, 2019, 145: 107682. doi: 10.1016/j.cep.2019.107682 |
[8] | SUBRAMANI A, JACANGELO J G. Treatment technologies for reverse osmosis concentrate volume minimization: A review[J]. Separation and Purification Technology, 2014, 122: 472-489. doi: 10.1016/j.seppur.2013.12.004 |
[9] | XU W, CHEN Q, GE Q. Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO processes[J]. Desalination, 2017, 419: 101-116. doi: 10.1016/j.desal.2017.06.007 |
[10] | ISMAIL A F, MATSUURA T. Progress in transport theory and characterization method of reverse osmosis (RO) membrane in past fifty years[J]. Desalination, 2018, 434: 2-11. doi: 10.1016/j.desal.2017.09.028 |
[11] | 姚吉, 张稳妥, 滕良方, 等. “双膜工艺”在工业区污水处理厂再生水工程中的应用[J]. 中国给水排水, 2019, 35(20): 37-41. |
[12] | SONG Y, HU Q, SUN Y, et al. The feasibility of UF-RO integrated membrane system combined with coagulation/flocculation for hairwork dyeing effluent reclamation[J]. Science of the Total Environment, 2019, 691: 45-54. doi: 10.1016/j.scitotenv.2019.07.130 |
[13] | AL-AMSHAWEE S, YUNUS M Y B M, AZODDEIN A A M, et al. Electrodialysis desalination for water and wastewater: A review[J]. Chemical Engineering Journal, 2020, 380: 122231. doi: 10.1016/j.cej.2019.122231 |
[14] | 卞晓彤, 黄永明, 郭如涛, 等. 高盐废水单质分盐与资源化利用的研究进展[J]. 无机盐工业, 2019, 51(8): 7-12. |
[15] | 王兵, 施斌, 来进和, 等. 高盐有机废水处理研究现状及应用[J]. 水处理技术, 2020, 46(3): 5-10. |
[16] | CAI L, SUN J, CUI L, et al. Stabilization of heavy metals in piggery wastewater sludge through coagulation-hydrothermal reaction-pyrolysis process and sludge biochar for tylosin removal[J]. Journal of Cleaner Production, 2020, 260(1): 121165. |
[17] | CUI Z, TIAN W, FAN C, et al. Novel design and dynamic control of coal pyrolysis wastewater treatment process[J]. Separation and Purification Technology, 2020, 241(15): 116725. |
[18] | BEREZINA N, GNUSIN N, DYOMINA O, et al. Water electrotransport in membrane systems. Experiment and model description[J]. Journal of Membrane Science, 1994, 86(3): 207-229. doi: 10.1016/0376-7388(93)E0075-U |
[19] | SCARAZZATO T, PANOSSIAN Z, TENóRIO J A S, et al. A review of cleaner production in electroplating industries using electrodialysis[J]. Journal of Cleaner Production, 2017, 168: 1590-1602. doi: 10.1016/j.jclepro.2017.03.152 |
[20] | STRATHMANN H. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3): 268-288. doi: 10.1016/j.desal.2010.04.069 |
[21] | ZHANG Y, GHYSELBRECHT K, MEESSCHAERT B, et al. Electrodialysis on high scaling potential RO concentrate to improve water recovery in wastewater treatment[J]. Tissue Antigens, 2010, 54(6): 585-591. |
[22] | ZHANG Y, GHYSELBRECHT K, VANHERPE R, et al. RO concentrate minimization by electrodialysis: Techno-economic analysis and environmental concerns[J]. Journal of Environmental Management, 2012, 107: 28-36. |
[23] | SELVARAJ H, ARAVIND P, SUNDARAM M. Four compartment mono selective electrodialysis for separation of sodium formate from industry wastewater[J]. Chemical Engineering Journal, 2018, 333: 162-169. doi: 10.1016/j.cej.2017.09.150 |
[24] | LI Z, LI R, ZHONG Z, et al. Acid precipitation coupled electrodialysis to improve separation of chloride and organics in pulping crystallization mother liquor[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2917-2924. doi: 10.1016/j.cjche.2019.07.002 |
[25] | 张维润. 电渗析工程学[M]. 北京: 科学出版社, 1995. |
[26] | TANAKA Y. Regularity in ion-exchange membrane characteristics and concentration of sea water[J]. Journal of Membrane Science, 1999, 163(2): 277-287. doi: 10.1016/S0376-7388(99)00169-6 |
[27] | 蒋晨啸. 以电渗析为基础的传质新理论和新工艺研究[D]. 合肥: 中国科学技术大学, 2016. |
[28] | JIANG C, WANG Q, LI Y, et al. Water electro-transport with hydrated cations in electrodialysis[J]. Desalination, 2015, 365: 204-212. doi: 10.1016/j.desal.2015.03.007 |
[29] | MCGOVERN R K, WEINER A M, SUN L, et al. On the cost of electrodialysis for the desalination of high salinity feeds[J]. Applied Energy, 2014, 136: 649-661. doi: 10.1016/j.apenergy.2014.09.050 |
[30] | MCGOVERN R K, ZUBAIR S M, LIENHARD V J H. The benefits of hybridising electrodialysis with reverse osmosis[J]. Journal of Membrane Science, 2014, 469: 326-335. doi: 10.1016/j.memsci.2014.06.040 |
[31] | ROTTIERS T, GHYSELBRECHT K, MEESSCHAERT B, et al. Influence of the type of anion membrane on solvent flux and back diffusion in electrodialysis of concentrated NaCl solutions[J]. Chemical Engineering Science, 2014, 113: 95-100. doi: 10.1016/j.ces.2014.04.008 |
[32] | XU T, HUANG C. Electrodialysis-based separation technologies: A critical review[J]. AIChE Journal, 2008, 54(12): 3147-3159. doi: 10.1002/aic.11643 |
[33] | YAN H, WANG Y, WU L, et al. Multistage-batch electrodialysis to concentrate high-salinity solutions: Process optimisation, water transport, and energy consumption[J]. Journal of Membrane Science, 2019: 245-257. |
[34] | REN M J, NING P, XU J, et al. Concentration and treatment of ceric ammonium nitrate wastewater by integrated electrodialysis-vacuum membrane distillation process[J]. Chemical Engineering Journal, 2018, 351: 721-731. doi: 10.1016/j.cej.2018.06.155 |
[35] | 奚凤翔. 各种离子在电渗析过程中的迁移行为[J]. 工业水处理, 1993, 13(5): 27-28. |
[36] | SATA T. Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis: Effect of hydrophilicity of anion exchange membranes on permselectivity of anions[J]. Journal of Membrane Science, 2000, 167(1): 1-31. doi: 10.1016/S0376-7388(99)00277-X |
[37] | NAGASUBRAMANIAN K, CHLANDA F P, LIU K J. Use of bipolar membranes for generation of acid and base: An engineering and economic analysis[J]. Journal of Membrane Science, 1977, 2(2): 109-124. doi: 10.5360/membrane.2.109 |
[38] | YE W, HUANG J, LIN J, et al. Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: Conditioning NaOH as a CO2 absorbent[J]. Separation and Purification Technology, 2015, 144: 206-214. doi: 10.1016/j.seppur.2015.02.031 |
[39] | JIANG C, ZHANG Y, FENG H, et al. Simultaneous CO2 capture and amino acid production using bipolar membrane electrodialysis(BMED)[J]. Journal of Membrane Science, 2017, 542: 264-271. doi: 10.1016/j.memsci.2017.08.004 |
[40] | TRAN A T K, MONDAL P, LIN J, et al. Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor[J]. Journal of Membrane Science, 2015, 473: 118-127. doi: 10.1016/j.memsci.2014.09.006 |
[41] | CHEN B, JIANG C, WANG Y, et al. Selectrodialysis with bipolar membrane for the reclamation of concentrated brine from RO plant[J]. Desalination, 2018, 442: 8-15. doi: 10.1016/j.desal.2018.04.031 |
[42] | 冯雅萌, 田秉晖, 夏佰钦, 等. 水溶液中苯酚电离形态表征及电渗析过程迁移特征[J]. 环境工程学报, 2018, 12(9): 2466-2474. doi: 10.12030/j.cjee.201804091 |
[43] | HAN L, GALIER S, ROUX-DE BALMANN H. A phenomenological model to evaluate the performances of electrodialysis for the desalination of saline water containing organic solutes[J]. Desalination, 2017, 422: 17-24. doi: 10.1016/j.desal.2017.08.008 |
[44] | LUIZ A, MCCLURE D D, LIM K, et al. Potential upgrading of bio-refinery streams by electrodialysis[J]. Desalination, 2017, 415: 20-28. doi: 10.1016/j.desal.2017.02.023 |
[45] | ZHANG Y, VAN DER BRUGGEN B, PINOY L, et al. Separation of nutrient ions and organic compounds from salts in RO concentrates by standard and monovalent selective ion-exchange membranes used in electrodialysis[J]. Journal of Membrane Science, 2009, 332(1/2): 104-112. |
[46] | ZHANG Y, PINOY L, MEESSCHAERT B, et al. Separation of small organic ions from salts by ion-exchange membrane in electrodialysis[J]. AIChE Journal, 2011, 57(8): 2070-2078. doi: 10.1002/aic.12433 |
[47] | FEHéR J, ?ERVE?ANSKY I, VáCLAVíK L, et al. Electrodialysis applied for phenylacetic acid separation from organic impurities: Increasing the recovery[J]. Separation and Purification Technology, 2020, 235: 116222. doi: 10.1016/j.seppur.2019.116222 |
[48] | 侯林逍. 单多价阳离子选择性分离膜的制备和性能表征[D]. 合肥: 中国科学技术大学, 2019. |
[49] | 杨金涛, 王章忠, 卜小海, 等. 离子交换膜的改性研究进展[J]. 膜科学与技术, 2019, 39(3): 150-156. |
[50] | IRFAN M, WANG Y, XU T. Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity[J]. Chemical Engineering Journal, 2020, 383: 123171. doi: 10.1016/j.cej.2019.123171 |
[51] | PAN J, DING J, TAN R, et al. Preparation of a monovalent selective anion exchange membrane through constructing a covalently crosslinked interface by electro-deposition of polyethyleneimine[J]. Journal of Membrane Science, 2017, 539: 263-272. doi: 10.1016/j.memsci.2017.06.017 |
[52] | YE Z L, GHYSELBRECHT K, MONBALLIU A, et al. Fractionating various nutrient ions for resource recovery from swine wastewater using simultaneous anionic and cationic selective-electrodialysis[J]. Water Research, 2019, 160: 424-434. doi: 10.1016/j.watres.2019.05.085 |
[53] | CHEN F, CHI Y, ZHANG M, et al. Removal of heat stable salts from N-methyldiethanolamine wastewater by anion exchange resin coupled three-compartment electrodialysis[J]. Separation and Purification Technology, 2020, 242: 116777. doi: 10.1016/j.seppur.2020.116777 |
[54] | BERKESSA Y W, LANG Q, YAN B, et al. Anion exchange membrane organic fouling and mitigation in salt valorization process from high salinity textile wastewater by bipolar membrane electrodialysis[J]. Desalination, 2019, 465: 94-103. doi: 10.1016/j.desal.2019.04.027 |
[55] | PAL D, NEOGI S, DE S. Improved antifouling characteristics of acrylonitrile co-polymer membrane by low temperature pulsed ammonia plasma in the treatment of oil-water emulsion[J]. Vacuum, 2016, 131: 293-304. doi: 10.1016/j.vacuum.2016.07.010 |
[56] | ZHAO Z, SHI S, CAO H, et al. Layer-by-layer assembly of anion exchange membrane by electrodeposition of polyelectrolytes for improved antifouling performance[J]. Journal of Membrane Science, 2018, 558: 1-8. doi: 10.1016/j.memsci.2018.04.035 |
[57] | LI Y, SHI S, CAO H, et al. Improvement of the antifouling performance and stability of an anion exchange membrane by surface modification with graphene oxide (GO) and polydopamine (PDA)[J]. Journal of Membrane Science, 2018, 566: 44-53. doi: 10.1016/j.memsci.2018.08.054 |
[58] | HAN J H, JEONG N, KIM C S, et al. Reverse electrodialysis (RED) using a bipolar membrane to suppress inorganic fouling around the cathode[J]. Water Research, 2019, 166: 115078. doi: 10.1016/j.watres.2019.115078 |
[59] | GREENLEE L F, TESTA F, LAWLER D F, et al. Effect of antiscalant degradation on salt precipitation and solid/liquid separation of RO concentrate[J]. Journal of Membrane Science, 366(1/2): 48-61. |
[60] | ZHANG Y, GHYSELBRECHT K, MEESSCHAERT B, et al. Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation[J]. Journal of Membrane Science, 2011, 378(1): 101-110. |