Enhancing process and mechanism of Cr(Ⅵ) bioreduction and fixation in groundwater by Fe(Ⅲ)-bearing clay mineral and electron shuttle
MA Xiaoxu1,2,, MENG Ying2,,, ZHANG Jianda1, ZHAO Ziwang2,3, YAO Guoqing2,4, WANG Yahua2,3, LIU Wenbin2,3, YUAN Qingke2, LUAN Fubo2,3 1.School of Resources and Environmental Sciences, Hebei Normal University, Shijiazhuang 050024, China 2.Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 3.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China 4.School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
Abstract:In order to improve the efficiency of Cr(Ⅵ) bioreduction and fixation and to achieve rapid and effective removal of Cr(Ⅵ) pollutants in groundwater, the method of adding clay minerals and electron shuttle was adopted. The effects of iron-bearing clay mineral NAu-2 alone, electron shuttle AQDS alone and their both on the bioreduction and fixation of Cr(Ⅵ) with different concentrations of 0.1~2.0 mmol·L?1 in groundwater by metal-reducing bacteria Shewanella oneidensis MR-1 were explored. The results showed that NAu-2 alone addition have no effect on the promotion of Cr(Ⅵ) bioreduction, while AQDS alone addition could promote the bioreduction of Cr(Ⅵ) with different concentrations of 0.1~2.0 mmol·L?1, and the enhancement factor reached 1.33~3.90. With simultaneous addition of NAu-2 and AQDS, the enhancement of bioreduction was significantly elevated for Cr(Ⅵ) with different concentrations, and the enhancement factor reached 2.02~10.49. In addition, compared with the synergistic effects for bioreduction of Cr(Ⅵ) with different concentrations by MR-1 under the coexistence of AQDS and NAu-2, synergistic effect didn’t occur at low Cr(Ⅵ) contents of 0.1~0.5 mmol·L?1 with the synergistic factor lower than 1.0; while a significant synergistic effect occurred at medium and high Cr(Ⅵ) contenta of 0.8~2.0 mmol·L?1 with the synergistic factor higher than 1.0, and at the concentration of 1.2 mmol·L?1, the most significant synergistic effect occurred with the synergistic factor=2.98. This indicated that there were big differences in synergistic effect for the bioreduction of Cr(Ⅵ) among the medium and high concentrations. This study provides new remediation thought and reference data for the Cr(Ⅵ) contaminated sites through investigating the process and mechanism of Cr(Ⅵ) migration and transformation in the NAu-2, AQDS and MR-1 coexisting complex system under different concentrations of Cr(Ⅵ). Key words:Cr(Ⅵ)/ microbial reduction/ Shewanella oneidensis MR-1/ nontronite(NAu-2)/ anthraquinone-2,6-disulfonate(AQDS).
图1NAu-2与AQDS单独/共存时对不同浓度Cr(Ⅵ)生物还原过程的影响 Figure1.Effects of NAu-2 alone, AQDS alone and their both on the bioreduction process of Cr(Ⅵ) with different concentrations
图2NAu-2与AQDS单独/共存时不同浓度Cr(Ⅵ)生物还原的强化系数 Figure2.Enhancement factors of the bioreduction process of Cr(Ⅵ) with different concentrations under the existances of NAu-2 alone, AQDS alone and their both
图3不同浓度Cr(Ⅵ)生物还原过程中Fe(Ⅱ)生成的零级动力学常数的变化 Figure3.Changes in zero-order kinetic constants for Fe(Ⅱ) production in the bioreduction of Cr(Ⅵ) with different concentrations
表1不同Cr(Ⅵ)浓度下主要反应中MR-1、NAu-2、AQDS和乳酸钠的组合 Table1.Combination of MR-1, NAu-2, AQDS and sodium lactate in the main reactions at different Cr(Ⅵ) concentrations
反应组合
MR-1
Cr(Ⅵ)
NAu-2
AQDS
乳酸钠
MR-1+Cr(Ⅵ)
+
+
?
?
+
MR-1+Cr(Ⅵ)+NAu-2
+
+
+
?
+
MR-1+Cr(Ⅵ)+AQDS
+
+
?
+
+
MR-1+Cr(Ⅵ)+ NAu-2+AQDS
+
+
+
+
+
Cr(Ⅵ)
?
+
?
?
+
MR-1+NAu-2
+
?
+
?
+
MR-1+NAu-2+AQDS
+
?
+
+
+
NAu-2
?
?
+
?
+
注:+代表体系中添加该物质;?代表体系中不添加该物质。
反应组合
MR-1
Cr(Ⅵ)
NAu-2
AQDS
乳酸钠
MR-1+Cr(Ⅵ)
+
+
?
?
+
MR-1+Cr(Ⅵ)+NAu-2
+
+
+
?
+
MR-1+Cr(Ⅵ)+AQDS
+
+
?
+
+
MR-1+Cr(Ⅵ)+ NAu-2+AQDS
+
+
+
+
+
Cr(Ⅵ)
?
+
?
?
+
MR-1+NAu-2
+
?
+
?
+
MR-1+NAu-2+AQDS
+
?
+
+
+
NAu-2
?
?
+
?
+
注:+代表体系中添加该物质;?代表体系中不添加该物质。
下载: 导出CSV 表2AQDS与NAu-2存在下微生物还原不同初始浓度Cr(Ⅵ)的一级动力学常数 Table2.First-order kinetic constants of the bioreduction of Cr(Ⅵ) with different initial concentrations in the presence of AQDS and NAu-2
Cr(Ⅵ)/(mmol·L?1)
MR-1+Cr(Ⅵ)
MR-1+Cr(Ⅵ)+AQDS
MR-1+Cr(Ⅵ)+NAu-2
MR-1+Cr(Ⅵ)+NAu-2+AQDS
kcells
R2
kcells+AQDS
R2
kcells+NAu-2
R2
kcells+AQDS+NAu-2
R2
0.1
37.578±0.377
1.00
—
—
34.121±3.080
1.00
—
—
0.2
9.926±0.216
0.98
25.787±0.071
1.00
8.622±0.976
0.99
20.018±0.437
1.00
0.5
0.213±0.007
0.94
0.832±0.000
1.00
0.138±0.006
0.83
0.953±0.000
1.00
0.8
0.096±0.005
0.92
0.225±0.005
0.99
0.068±0.002
0.79
0.580±0.010
1.00
1.2
0.052±0.004
0.83
0.131±0.001
0.97
0.054±0.001
0.92
0.549±0.002
0.97
2.0
0.045±0.003
0.92
0.060±0.001
0.90
0.035±0.000
0.89
0.143±0.001
0.95
注:—代表反应过程太快,无法进行浓度测定和一级动力学常数计算。
Cr(Ⅵ)/(mmol·L?1)
MR-1+Cr(Ⅵ)
MR-1+Cr(Ⅵ)+AQDS
MR-1+Cr(Ⅵ)+NAu-2
MR-1+Cr(Ⅵ)+NAu-2+AQDS
kcells
R2
kcells+AQDS
R2
kcells+NAu-2
R2
kcells+AQDS+NAu-2
R2
0.1
37.578±0.377
1.00
—
—
34.121±3.080
1.00
—
—
0.2
9.926±0.216
0.98
25.787±0.071
1.00
8.622±0.976
0.99
20.018±0.437
1.00
0.5
0.213±0.007
0.94
0.832±0.000
1.00
0.138±0.006
0.83
0.953±0.000
1.00
0.8
0.096±0.005
0.92
0.225±0.005
0.99
0.068±0.002
0.79
0.580±0.010
1.00
1.2
0.052±0.004
0.83
0.131±0.001
0.97
0.054±0.001
0.92
0.549±0.002
0.97
2.0
0.045±0.003
0.92
0.060±0.001
0.90
0.035±0.000
0.89
0.143±0.001
0.95
注:—代表反应过程太快,无法进行浓度测定和一级动力学常数计算。
下载: 导出CSV 表3不同浓度Cr(Ⅵ)生物还原体系中强化系数与协同系数 Table3.Enhancement factor and synergistic factor in bioreduction system at different concentrations of Cr(Ⅵ)
NARAYANI M, SHETTY K V. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(9): 955-1009. doi: 10.1080/10643389.2011.627022
[2]
LAXMAN R S, MORE S. Reduction of hexavalent chromium by streptomyces griseus[J]. Minerals Engineering, 2002, 15(11): 831-837. doi: 10.1016/S0892-6875(02)00128-0
[3]
SELVARAJ K, MANONMANI S, PATTABHI S. Removal of hexavalent chromium using distillery sludge[J]. Bioresource Technology, 2003, 89(2): 207-211. doi: 10.1016/S0960-8524(03)00062-2
[4]
SHAKOORI A R, MAKHDOOM M, HAQ R U. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries[J]. Applied Microbiology and Biotechnology, 2000, 53(3): 348-351. doi: 10.1007/s002530050033
[5]
GONZALEZ A R, NDUNG'U K, FLEGAL A R. Natural occurrence of hexavalent chromium in the aromas red sands aquifer, California[J]. Environmental Science & Technology, 2005, 39(15): 5505-5511.
[6]
IZBICKI J A, BULLEN T D, MARTIN P, et al. Delta chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA[J]. Applied Geochemistry, 2012, 27(4): 841-853. doi: 10.1016/j.apgeochem.2011.12.019
[7]
PANAGIOTAKIS I, DERMATAS D, VATSERIS C, et al. Forensic investigation of a chromium(VI) groundwater plume in Thiva, Greece[J]. Journal of Hazardous Materials, 2015, 281: 27-34. doi: 10.1016/j.jhazmat.2014.09.048
[8]
MUKHOPADHYAY B, SUNDQUIST J, SCHMITZ R J. Removal of Cr(VI) from Cr-contaminated groundwater through electrochemical addition of Fe(II)[J]. Journal of Environmental Management, 2007, 82(1): 66-76.
[9]
DEY S, PAUL A K. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden[J]. Brazilian Journal of Microbiology, 2013, 44(1): 307-315. doi: 10.1590/S1517-83822013000100045
[10]
FARMER J G, THOMAS R P, GRAHAM M C, et al. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites[J]. Journal of Environmental Monitoring, 2002, 4(2): 235-243. doi: 10.1039/b108681m
[11]
KAZAKIS N, KANTIRANIS N, KALAITZIDOU K, et al. Origin of hexavalent chromium in groundwater: The example of Sarigkiol Basin, Northern Greece[J]. Science of the Total Environment, 2017, 593-594: 552-566. doi: 10.1016/j.scitotenv.2017.03.128
[12]
GAO Y, XIA J. Chromium contamination accident in China: viewing environment policy of China[J]. Environmental Science & Technology, 2011, 45(20): 8605-8606.
[13]
WANG Y T, XIAO C S. Factors affecting hexavalent chromium reduction in pure cultures of bacteria[J]. Water Research, 1995, 29(11): 2467-2474. doi: 10.1016/0043-1354(95)00093-Z
[14]
CUMMINGS D E, FENDORF S, SINGH N, et al. Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum[J]. Environmental Science & Technology, 2007, 41(1): 146-152.
[15]
AHEMAD M. Bacterial mechanisms for Cr(VI) resistance and reduction: An overview and recent advances[J]. Folia Microbiologica, 2014, 59(4): 321-332. doi: 10.1007/s12223-014-0304-8
[16]
MASAKI Y, HIRAJIMA T, SASAKI K, et al. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella aromatica strain PFBC[J]. Extremophiles, 2015, 19(2): 495-503. doi: 10.1007/s00792-015-0733-6
[17]
LIU G, QIU S, LIU B, et al. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids[J]. Scientific Reports, 2017, 7: 1-9. doi: 10.1038/s41598-016-0028-x
[18]
LUAN F, LIU Y, GRIFFIN A M, et al. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32[J]. Environmental Science & Technology, 2015, 49(3): 1418-1426.
[19]
LUAN F, BURGOS W D, XIE L, et al. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32[J]. Environmental Science & Technology, 2010, 44(1): 184-190.
[20]
THACHER R, HSU L, RAVINDRAN V, et al. Modeling the transport and bioreduction of hexavalent chromium in aquifers: Influence of natural organic matter[J]. Chemical Engineering Science, 2015, 138: 552-565. doi: 10.1016/j.ces.2015.08.011
[21]
BROOKSHAW D R, COKER V S, LLOYD J R, et al. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite[J]. Environmental Science & Technology, 2014, 48(19): 11337-11342.
[22]
MENG Y, ZHAO Z, BURGOS W D, et al. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1[J]. Science of the Total Environment, 2018, 640-641: 591-598. doi: 10.1016/j.scitotenv.2018.05.331
[23]
BUTLER E C, CHEN L, HANSEL C M, et al. Biological versus mineralogical chromium reduction: Potential for reoxidation by manganese oxide[J]. Environmental Science: Processes & Impacts, 2015, 17(11): 1930-1940.
[24]
BISHOP M E, GLASSER P, DONG H, et al. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 133: 186-203. doi: 10.1016/j.gca.2014.02.040
[25]
LUAN F, BURGOS W D. Sequential extraction method for determination of Fe(II/III) and U(IV/VI) in suspensions of iron-bearing phyllosilicates and uranium[J]. Environmental Science & Technology, 2012, 46(21): 11995-12002.
[26]
MATOS J, LAINE J, HERRMANN J M. Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania[J]. Journal of Catalysis, 2001, 200(1): 10-20. doi: 10.1006/jcat.2001.3191
[27]
ZHOU T, LIM T T, WU X. Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands[J]. Water Research, 2011, 45(9): 2915-2924. doi: 10.1016/j.watres.2011.03.008
[28]
ZHOU T, WU X, ZHANG Y, et al. Synergistic catalytic degradation of antibiotic sulfamethazine in a heterogeneous sonophotolytic goethite/oxalate Fenton-like system[J]. Applied Catalysis B: Environmental, 2013, 136-137: 294-301. doi: 10.1016/j.apcatb.2013.02.004
[29]
KAUWE J S, BERTELSEN S, MAYO K, et al. Suggestive synergy between genetic variants in TF and HFE as risk factors for Alzheimer’s disease[J]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153(4): 955-959.
[30]
JAISI D P, DONG H, LIU C. Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite[J]. Geochimica et Cosmochimica Acta, 2007, 71(5): 1145-1158. doi: 10.1016/j.gca.2006.11.027
1.School of Resources and Environmental Sciences, Hebei Normal University, Shijiazhuang 050024, China 2.Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 3.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China 4.School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China Received Date: 2019-11-14 Accepted Date: 2020-03-01 Available Online: 2020-09-05 Keywords:Cr(Ⅵ)/ microbial reduction/ Shewanella oneidensis MR-1/ nontronite(NAu-2)/ anthraquinone-2,6-disulfonate(AQDS) Abstract:In order to improve the efficiency of Cr(Ⅵ) bioreduction and fixation and to achieve rapid and effective removal of Cr(Ⅵ) pollutants in groundwater, the method of adding clay minerals and electron shuttle was adopted. The effects of iron-bearing clay mineral NAu-2 alone, electron shuttle AQDS alone and their both on the bioreduction and fixation of Cr(Ⅵ) with different concentrations of 0.1~2.0 mmol·L?1 in groundwater by metal-reducing bacteria Shewanella oneidensis MR-1 were explored. The results showed that NAu-2 alone addition have no effect on the promotion of Cr(Ⅵ) bioreduction, while AQDS alone addition could promote the bioreduction of Cr(Ⅵ) with different concentrations of 0.1~2.0 mmol·L?1, and the enhancement factor reached 1.33~3.90. With simultaneous addition of NAu-2 and AQDS, the enhancement of bioreduction was significantly elevated for Cr(Ⅵ) with different concentrations, and the enhancement factor reached 2.02~10.49. In addition, compared with the synergistic effects for bioreduction of Cr(Ⅵ) with different concentrations by MR-1 under the coexistence of AQDS and NAu-2, synergistic effect didn’t occur at low Cr(Ⅵ) contents of 0.1~0.5 mmol·L?1 with the synergistic factor lower than 1.0; while a significant synergistic effect occurred at medium and high Cr(Ⅵ) contenta of 0.8~2.0 mmol·L?1 with the synergistic factor higher than 1.0, and at the concentration of 1.2 mmol·L?1, the most significant synergistic effect occurred with the synergistic factor=2.98. This indicated that there were big differences in synergistic effect for the bioreduction of Cr(Ⅵ) among the medium and high concentrations. This study provides new remediation thought and reference data for the Cr(Ⅵ) contaminated sites through investigating the process and mechanism of Cr(Ⅵ) migration and transformation in the NAu-2, AQDS and MR-1 coexisting complex system under different concentrations of Cr(Ⅵ).