Abstract:In order to investigate the effect of Aspergillus fumigatus f4 on the soil heavy metal remediation in e-waste dismantling site by ryegrass, the experiments were conducted to compare the biomass, heavy metal content, heavy metal form distribution, enrichment coefficient, and migration coefficient of ryegrass treated with and without Aspergillus fumigatus f4 inoculation. The results showed that the aboveground biomass of ryegrass reached the largest at the 20 d-stage before the inoculation, and then gradually decreased with time. There was a significant difference in the substratum biomass of ryegrass between the treatments with and without Aspergillus fumigatus f4 inoculation. The biomass after inoculation increased by 91.27%. Compared with the non-inoculated treatment, the content of Ni, Cu, Zn, Cd, Cr, and Pb in the substratum biomass of ryegrass with Aspergillus fumigatus f4 inoculation increased by 484%, 398%, 477%, 355%, 531%, and 490%, respectively. The forms of heavy metals in ryegrass rhizosphere also changed. Compared with the non-inoculated treatment, the proportion of weakly acid extractable forms of Cd, Cu, Zn, Pb, and Cr in ryegrass rhizosphere with Aspergillus fumigatus f4 inoculation increased by 0.9%, 0.8%, 0.5%, 0.3% and 0.1%, respectively. Aspergillus fumigatus f4 could promote the growth of ryegrass, increase the content of weak acid extractables of heavy metals in the rhizosphere soil, and their enrichment by ryegrass, and thereby improve the remediation efficiency of heavy metals by ryegrass. Key words:e-waste dismantling site/ ryegrass/ Aspergillus fumigatus/ heavy metal pollution.
图1黑麦草地上部与地下部干质量 Figure1.Dry weight of rye grass above and below ground
表1黑麦草各部位重金属含量 Table1.Heavy metal concentrations in aboveground and belowground biomass of ryegrass mg·kg?1
重金属元素
取样部位
不接菌处理
接菌处理
Cu
D1地上部
64.58±5.26a
58.97±6.52a
D2地上部
43.28±9.29a
87.99±3.01b
D3地上部
791.22±32.89a
424.78±15.03b
地下部
772.53±28.36a
3 854.06±273.39b
Cd
D1地上部
1.25±0.16a
1.33±0.27a
D2地上部
1.33±0.20a
3.78±0.21b
D3地上部
12.48±0.24a
8.83±0.37b
地下部
10.32±0.52a
50.88±0.82b
Cr
D1地上部
13.07±1.09a
10.53 ±1.66a
D2地上部
8.71±0.86a
17.71±1.74b
D3地上部
27.26±1.37a
24.08±1.63a
地下部
45.20±2.14a
285.51±4.98b
Zn
D1地上部
410.35±4.14a
403.27±2.93a
D2地上部
323.78±28.86a
945.02±4.80b
D3地上部
4 414.28±197.67a
2 933.36±69.25b
地下部
3 032.71±171.94a
17 310.42±83.50b
Pb
D1地上部
141.53±1.60a
132.04±2.67b
D2地上部
124.00±2.28a
70.32±8.18b
D3地上部
564.98±3.98a
283.56±2.24b
地下部
418.40±14.37a
2 469.09±159.84b
注:不同小写字母表示在0.05水平下差异显著。
重金属元素
取样部位
不接菌处理
接菌处理
Cu
D1地上部
64.58±5.26a
58.97±6.52a
D2地上部
43.28±9.29a
87.99±3.01b
D3地上部
791.22±32.89a
424.78±15.03b
地下部
772.53±28.36a
3 854.06±273.39b
Cd
D1地上部
1.25±0.16a
1.33±0.27a
D2地上部
1.33±0.20a
3.78±0.21b
D3地上部
12.48±0.24a
8.83±0.37b
地下部
10.32±0.52a
50.88±0.82b
Cr
D1地上部
13.07±1.09a
10.53 ±1.66a
D2地上部
8.71±0.86a
17.71±1.74b
D3地上部
27.26±1.37a
24.08±1.63a
地下部
45.20±2.14a
285.51±4.98b
Zn
D1地上部
410.35±4.14a
403.27±2.93a
D2地上部
323.78±28.86a
945.02±4.80b
D3地上部
4 414.28±197.67a
2 933.36±69.25b
地下部
3 032.71±171.94a
17 310.42±83.50b
Pb
D1地上部
141.53±1.60a
132.04±2.67b
D2地上部
124.00±2.28a
70.32±8.18b
D3地上部
564.98±3.98a
283.56±2.24b
地下部
418.40±14.37a
2 469.09±159.84b
注:不同小写字母表示在0.05水平下差异显著。
下载: 导出CSV 表2黑麦草对重金属的迁移系数与富集系数 Table2.Migration coefficient and enrichment factor of heavy metals in ryegrass mg·kg?1
重金属 元素
取样部位
不接菌处理
接菌处理
TF
BCF
TF
BCF
Cu
D1地上部
0.08
0.01
0.02
0.01
D2地上部
0.06
0.01
0.02
0.02
D3地上部
1.02
0.15
0.11
0.08
地下部
0.14
0.72
Cd
D1地上部
0.12
0.02
0.03
0.02
D2地上部
0.13
0.02
0.08
0.07
D3地上部
1.21
0.23
0.19
0.16
地下部
0.19
0.94
Cr
D1地上部
0.29
0.02
0.04
0.01
D2地上部
0.19
0.01
0.06
0.02
D3地上部
0.6
0.04
0.08
0.03
地下部
0.06
0.39
Zn
D1地上部
0.14
0.02
0.02
0.02
D2地上部
0.11
0.01
0.05
0.04
D3地上部
1.46
0.18
0.17
0.12
地下部
0.13
0.72
Pb
D1地上部
0.34
0.03
0.05
0.03
D2地上部
0.3
0.03
0.03
0.02
D3地上部
1.35
0.13
0.11
0.07
地下部
0.1
0.5
重金属 元素
取样部位
不接菌处理
接菌处理
TF
BCF
TF
BCF
Cu
D1地上部
0.08
0.01
0.02
0.01
D2地上部
0.06
0.01
0.02
0.02
D3地上部
1.02
0.15
0.11
0.08
地下部
0.14
0.72
Cd
D1地上部
0.12
0.02
0.03
0.02
D2地上部
0.13
0.02
0.08
0.07
D3地上部
1.21
0.23
0.19
0.16
地下部
0.19
0.94
Cr
D1地上部
0.29
0.02
0.04
0.01
D2地上部
0.19
0.01
0.06
0.02
D3地上部
0.6
0.04
0.08
0.03
地下部
0.06
0.39
Zn
D1地上部
0.14
0.02
0.02
0.02
D2地上部
0.11
0.01
0.05
0.04
D3地上部
1.46
0.18
0.17
0.12
地下部
0.13
0.72
Pb
D1地上部
0.34
0.03
0.05
0.03
D2地上部
0.3
0.03
0.03
0.02
D3地上部
1.35
0.13
0.11
0.07
地下部
0.1
0.5
下载: 导出CSV 表3土壤中重金属形态分布 Table3.Form distribution of heavy metals in soil %
重金属元素
弱酸可提取态
可还原态
可氧化态
残渣态
ck
烟曲霉f4
ck
烟曲霉f4
ck
烟曲霉f4
ck
烟曲霉f4
Cu
9.6
10.4
17.1
23.6
30.4
20.3
42.9
45.7
Cd
27.7
28.6
19.2
21.7
21.8
14.6
31.3
35.1
Cr
0.4
0.5
4.1
5.9
40.9
40.8
54.6
52.8
Pb
8.9
9.2
25.9
30.3
16.7
4.6
48.5
55.9
Zn
19.4
19.9
23.3
24.4
14.6
11.4
42.7
44.3
重金属元素
弱酸可提取态
可还原态
可氧化态
残渣态
ck
烟曲霉f4
ck
烟曲霉f4
ck
烟曲霉f4
ck
烟曲霉f4
Cu
9.6
10.4
17.1
23.6
30.4
20.3
42.9
45.7
Cd
27.7
28.6
19.2
21.7
21.8
14.6
31.3
35.1
Cr
0.4
0.5
4.1
5.9
40.9
40.8
54.6
52.8
Pb
8.9
9.2
25.9
30.3
16.7
4.6
48.5
55.9
Zn
19.4
19.9
23.3
24.4
14.6
11.4
42.7
44.3
下载: 导出CSV 表4黑麦草地下部中重金属与其土壤中各形态的相关系数 Table4.Correlation coefficients between heavy metals in the belowground part of ryegrass and the forms of heavy metals in soil
PANT D, JOSHI D, UPRETI M K, et al. Chemical and biological extraction of metals present in e-waste: A hybrid technology[J]. Waste Management, 2012, 32(5): 979-990. doi: 10.1016/j.wasman.2011.12.002
[3]
BURNS K N, SAYLER S K, NEITZEL R L, et al. Stress, health, noise exposures, and injuries among electronic waste recycling workers in Ghana[J]. Journal of Occupational Medicine and Toxicology, 2019, 14(1): 1-11. doi: 10.1186/s12995-018-0222-9
SHALINI T, CHARU L. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview[J]. Frontiers in Plant Science, 2018, 9: 452-463. doi: 10.3389/fpls.2018.00452
[6]
GUL I, MANZOOR M, HASHMI I, et al. Plant uptake and leaching potential upon application of amendments in soils spiked with heavy metals (Cd and Pb)[J]. Journal of Environmental Management, 2019, 249: 109408. doi: 10.1016/j.jenvman.2019.109408
[7]
ULLAH A, MUSHTAQ H, ALI H, et al. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach[J]. Environmental Science and Pollution Research, 2014, 22(4): 2505-2514.
[8]
ALY A H, DEBBAB A, PROKSCH P. Fungal endophytes: Unique plant inhabitants with great promises[J]. Applied Microbiology and Biotechnology, 2011, 90(6): 1829-1845. doi: 10.1007/s00253-011-3270-y
CHEN Y M, YANG W J, CHAO Y Q, et al. Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination[J]. Plant and Soil, 2016, 413(1/2): 203-216.
1.Waste Electrical and Electronic Equipment Research Centre of Shanghai Polytechnic University, Shanghai 201209, China 2.Shanghai Collaborative Innovation Centre for Waste Electrical and Electronic Equipment Recycling, Shanghai 201209, China Received Date: 2019-12-09 Accepted Date: 2020-03-28 Available Online: 2020-07-10 Keywords:e-waste dismantling site/ ryegrass/ Aspergillus fumigatus/ heavy metal pollution Abstract:In order to investigate the effect of Aspergillus fumigatus f4 on the soil heavy metal remediation in e-waste dismantling site by ryegrass, the experiments were conducted to compare the biomass, heavy metal content, heavy metal form distribution, enrichment coefficient, and migration coefficient of ryegrass treated with and without Aspergillus fumigatus f4 inoculation. The results showed that the aboveground biomass of ryegrass reached the largest at the 20 d-stage before the inoculation, and then gradually decreased with time. There was a significant difference in the substratum biomass of ryegrass between the treatments with and without Aspergillus fumigatus f4 inoculation. The biomass after inoculation increased by 91.27%. Compared with the non-inoculated treatment, the content of Ni, Cu, Zn, Cd, Cr, and Pb in the substratum biomass of ryegrass with Aspergillus fumigatus f4 inoculation increased by 484%, 398%, 477%, 355%, 531%, and 490%, respectively. The forms of heavy metals in ryegrass rhizosphere also changed. Compared with the non-inoculated treatment, the proportion of weakly acid extractable forms of Cd, Cu, Zn, Pb, and Cr in ryegrass rhizosphere with Aspergillus fumigatus f4 inoculation increased by 0.9%, 0.8%, 0.5%, 0.3% and 0.1%, respectively. Aspergillus fumigatus f4 could promote the growth of ryegrass, increase the content of weak acid extractables of heavy metals in the rhizosphere soil, and their enrichment by ryegrass, and thereby improve the remediation efficiency of heavy metals by ryegrass.