2.中国科学院大学,北京 100049
1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
小尺度水平上土壤污染物累积特征不仅与人们的生活直接相关,与社区环境管理和园林规划也有密切联系。选择北京市五环内具有不同植被格局(围绕式、行列式、混合式和群点式)的典型居民区为研究对象,通过小区内绿地的多点布点,调查分析表层土壤中的7种重金属元素(Cr、Ni、Cu、Zn、Cd、Pb、Mn)和16种优先控制多环芳烃(PAHs)的浓度;探究小尺度水平上,植被格局对绿地土壤重金属及多环芳烃累积的影响。结果表明:Cu、Zn、Cd和Pb为主要的重金属污染物;居民区土壤中,16种多环芳烃总量(Σ
,其主要来源于煤炭燃烧而非石油及其产物燃烧;行列式植被格局的绿地土壤中,主要重金属和PAHs污染物的浓度分布较为分散,高浓度污染物也往往出现在该类植被格局的土壤中;而群点式植被格局土壤中,主要重金属污染物以及本地指示性多环芳烃Ant、BaA和BaP的浓度中位值都较其他3种植被格局低。对行列式植被格局的小区进行土壤质量调查时,需要采集较多的样品数量才能获得代表性污染物浓度;同时,行列式植被格局有利于对污染物的截获,使绿地土壤起到吸纳污染物的作用,而群点式植被格局的绿地土壤环境质量较好,但是不利于发挥吸纳污染物的生态功能。
Accumulation characteristics at small scale is not only close to people’s daily lives, but also links to neighborhood environmental management and garden planning. Typical residential neighborhoods with different vegetation patterns(encircled, linear, mixed and dotted) were chosen as studied areas. Through multi-site sampling in residential green land, the concentrations of seven heavy metals(Cr, Ni, Cu, Zn, Cd, Pb, Mn) and 16 prior polycyclic aromatic hydrocarbons (PAHs) were analyzed, then the impacts of vegetation patterns on soil heavy metals and PAHs accumulation in green land at small scale were explored. The results showed that the main heavy metal contaminants were Cu, Zn, Cd and Pb. In residential soil, the concentration of total PAHs (Σ
, these PAHs were derived mainly from the combustion of coal rather than petroleum and its products. In soil with linear pattern of vegetation, the concentration of major heavy metals and PAHs contaminants presented scattered distribution, and high concentration contaminants were also observed. In soil with dotted pattern of vegetation, the median concentrations of major heavy metals and local indicative PAHs: Ant, BaA and BaP, were lower than the other three patterns of vegetation. For the soil quality investigation in residential area with linear pattern of vegetation, more sampling sites were needed to get representative concentration of contaminants. Moreover, linear pattern of vegetation in residential area was benefit for capturing contaminants, and the soil in green land could play a role in absorbing contaminants. By contrast, the soil environmental quality was better in green land with dotted pattern of vegetation, while was adverse to play its ecological role in absorbing contaminants.
.
Distribution of vegetation pattern in residential area
Distribution of soil samples
Scatter plots for the characteristic ratio of source analysis of PAHs in soil
不同植被格局下土壤主要重金属污染物的浓度数值分布
Numerical distribution of concentrations of major heavy metal pollutants in soil with different vegetation patterns
Numerical distribution of concentrations of PAHs in soil with different vegetation patterns
不同植被格局下指示性多环芳烃的浓度数值分布
Numerical distribution of concentrations of local indicative PAHs in soil with different vegetation patterns
Concentrations and variation coefficients of seven heavy metals in surface soil of study area
Principal component loadings of elements concentrations in studied soils after rotation
Skewness, kurtosis and normal test (K-S testing) of heavy metal concentrations in studied soils
[1] | VRSCAJ B, POGGIO L, MARSAN F A. A method for soil environmental quality evaluation for its management and planning in urban areas[J]. Landscape and Urban Planning, 2008, 88(2/3/4): 81-94. |
[2] | 房城, 王成, 郭二果, 等. 城市绿地与城市居民健康的关系[J]. 东北林业大学学报, 2010, 38(4): 114-116. doi: 10.3969/j.issn.1000-5382.2010.04.034 |
[3] | 符娟林, 章明奎, 厉仁安. 杭州市居民区土壤重金属形态和酸可溶性研究[J]. 科技通报, 2004, 20(1): 6-10. doi: 10.3969/j.issn.1001-7119.2004.01.002 |
[4] | 章迪, 曹善平, 孙建林, 等. 深圳市表层土壤多环芳烃污染及空间分异研究[J]. 环境科学, 2014, 35(2): 711-718. |
[5] | SUMAN S, SINHA A, TARAFDAR A. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India[J]. Science of the Total Environment, 2017, 545/546: 353-360. |
[6] | 王梦梦, 原梦云, 苏德纯. 我国大气重金属干湿沉降特征及时空变化规律[J]. 中国环境科学, 2017, 37(11): 4085-4096. doi: 10.3969/j.issn.1000-6923.2017.11.010 |
[7] | XU D C, ZHOU P, ZHAN J, et al. Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China[J]. Ecotoxicology and Environmental Safety, 2013, 90: 103-111. doi: 10.1016/j.ecoenv.2012.12.018 |
[8] | 田壮, 方淑波, 印春生, 等. 盐城海岸带景观格局变化和重金属空间分布相关分析[J]. 上海海洋大学学报, 2013, 22(6): 912-921. |
[9] | CAO H B, CHAO S H, QIAO L, et al. Urbanization-related changes in soil PAHs and potential health risks of emission sources in a township in southern Jiangsu, China[J]. Science of the Total Environment, 2017, 575: 692-700. doi: 10.1016/j.scitotenv.2016.09.106 |
[10] | HUANG Y P, LIU M, WANG R Q, et al. Characterization and source apportionment of PAHs from a highly urbanized river sediments based on land use analysis[J]. Chemosphere, 2017, 184: 1334-1345. doi: 10.1016/j.chemosphere.2017.06.117 |
[11] | 王静, 刘明丽, 张士超, 等. 沈抚新城不同土地利用类型多环芳烃含量、来源及人体健康风险评价[J]. 环境科学, 2017, 38(2): 703-710. |
[12] | 郭伟, 孙文惠, 赵仁鑫, 等. 呼和浩特市不同功能区土壤重金属污染特征及评价[J]. 环境科学, 2013, 34(4): 1561-1567. |
[13] | 符娟林, 章明奎, 厉仁安. 基于GIS的杭州市居民区土壤重金属污染现状及空间分异研究[J]. 土壤通报, 2005, 36(4): 575-578. doi: 10.3321/j.issn:0564-3945.2005.04.026 |
[14] | 符娟林. 杭州市居民区土壤环境质量的空间分异及其与土地利用历史的关系[D]. 杭州: 浙江大学, 2004. |
[15] | 陈潇霖, 杨丹, 胡迪青, 等. 北京土壤重金属分布及评价: 以五环以内为例[J]. 环境科学与技术, 2012, 35(S2): 78-81. |
[16] | 陈秀端, 卢新卫. 西安城市居民区土壤重金属健康风险评价[J]. 土壤通报, 2017, 48(4): 961-968. |
[17] | 吴新民, 李恋卿, 潘根兴, 等. 南京市不同功能城区土壤中重金属Cu、Zn、Pb和Cd的污染特征[J]. 环境科学, 2003, 24(3): 105-111. doi: 10.3321/j.issn:0250-3301.2003.03.021 |
[18] | MIELKE H W, GONZALES C R, SMITH M K, et al. The urban environment and children’s health: Soils as an integrator of lead, zinc and cadmium in New Orleans, Louisiana, U. S. A[J]. Environmental Research, 1999, 81(2): 117-129. doi: 10.1006/enrs.1999.3966 |
[19] | 姚宏, 张士超, 刘明丽, 等. 基于城镇化进程表层土壤多环芳烃来源解析及风险评价[J]. 环境科学, 2018, 39(2): 889-898. |
[20] | 赵利容, 孙省利, 柯盛. 湛江市区不同利用类型土壤的PAHs污染特征和来源[J]. 土壤学报, 2012, 49(4): 830-834. doi: 10.11766/trxb201105180179 |
[21] | SOUKARIEH B, EL HAWARI K, EL HUSSEINI M, et al. Impact of lebanese practices in industry, agriculture and urbanization on soil toxicity. Evaluation of the polycyclic aromatic hydrocarbons (PAHs) levels in soil[J]. Chemosphere, 2018, 210: 85-92. doi: 10.1016/j.chemosphere.2018.06.178 |
[22] | 北京市统计局, 国家统计局北京调查总队. 北京统计年鉴2018[EB/OL]. [2019-10-11]. http://www.bjstats.gov.cn/tjsj/.pdf, 2018. |
[23] | 宋爱春. 北京建成区居住绿地植物多样性及其景观研究[D]. 北京: 北京林业大学, 2014. |
[24] | XIE T, WANG M E, CHEN W P, et al. Impacts of urbanization and landscape patterns on the accumulation of heavy metals in soils in residential areas in Beijing[J]. Journal of Soils and Sediments, 2019, 19(1): 148-158. doi: 10.1007/s11368-018-2011-6 |
[25] | PENG C, OUYANG Z Y, WANG M E, et al. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators[J]. Environmental Pollution, 2013, 178: 426-432. doi: 10.1016/j.envpol.2013.03.058 |
[26] | 杨伟光, 王美娥, 陈卫平. 新疆干旱区某矿冶场对周围土壤重金属累积的影响[J]. 环境科学, 2019, 40(1): 445-452. |
[27] | 彭驰. 城市土壤重金属与多环芳烃累积过程模拟[D]. 北京: 中国科学院大学, 2013. |
[28] | 张枝焕, 卢另, 贺光秀, 等. 北京地区表层土壤中多环芳烃的分布特征及污染源分析[J]. 生态环境学报, 2011, 20(4): 668-675. doi: 10.3969/j.issn.1674-5906.2011.04.014 |
[29] | WANG M E, MARKERT B, CHEN W P, et al. Identification of heavy metal pollutants using multivariate analysis and effects of land uses on their accumulation in urban soils in Beijing, China[J]. Environmental Monitoring and Assessment, 2012, 184(10): 5889-5897. doi: 10.1007/s10661-011-2388-9 |
[30] | 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. |
[31] | YANG Z P, LU W X, LONG Y Q, et al. Assessment of heavy metals contamination in urban topsoil from Changchun City, China[J]. Journal of Geochemical Exploration, 2011, 108(1): 27-38. doi: 10.1016/j.gexplo.2010.09.006 |
[32] | WU S, XIA X H, LIN C Y, et al. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985-2008)[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 860-868. |
[33] | 王学松, 秦勇. 利用对数正态分布图解析徐州城市土壤中重金属元素来源和确定地球化学背景值[J]. 地球化学, 2007, 36(1): 98-102. doi: 10.3321/j.issn:0379-1726.2007.01.011 |
[34] | EDWARD N T J. Polycyclic aromatic hydrocarbons (PAHS) in the terrestrial environment: A review[J]. Journal of Environmental Quality, 1983, 12(4): 427-441. |
[35] | LIANG M, LIANG H D, RAO Z, et al. Characterization of polycyclic aromatic hydrocarbons in urban-rural integration area soil, North China: Spatial distribution, sources and potential human health risk assessment[J]. Chemosphere, 2019, 234: 875-884. doi: 10.1016/j.chemosphere.2019.06.119 |
[36] | SONG S, LU Y L, WANG T Y, et al. Urban-rural gradients of polycyclic aromatic hydrocarbons in soils at a regional scale: Quantification and prediction[J]. Environmental Manage, 2019, 249: 109406. |
[37] | YUNKER M B, MACDONALD R W, VINGAZAN R, et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489-515. doi: 10.1016/S0146-6380(02)00002-5 |
[38] | 张俊叶, 俞菲, 俞元春. 中国主要地区表层土壤多环芳烃含量及来源解析[J]. 生态环境学报, 2017, 26(6): 1059-1067. |