Simulation on phenanthrene migration in electrokinetic remediation of soil
DENG Zhiqun1,, REN Dajun1,2,,, KANG Chen1, HUANG Chaofan1, GUO Huiwen1, ZHANG Xiaoqing1,2, ZHANG Shuqin1,2, LI Wai3 1.College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China 2.Hubei Province Key Laboratory for Efficient Utilization and Agglomeration for Metallurgic Mineral Resources, Wuhan 430081, China 3.Department of Chemical Engineering, University of Western Australia School of Engineering, Western Australia 6009, Australia
Abstract:In order to address the problem of repairing phenanthrene-contaminated soil, both laboratory simulation and experiments were conducted to study the phenanthrene migration in soil under electrodynamics. Electroosmotic flow, electromigration, convection, and dispersion were determined to be the four main processes to affect phenanthrene migration. A phenanthrene migration model in contaminated soil under electrodynamics was established. The phenanthrene migration process was simulated using COMSOL Multiphysics 5.3 software, the migration equations and the selected parameters. Results showed that at the porosities of 0.330, 0.380, 0.430, and 0.480, the maximum mobility of phenanthrene were 31.9%, 34.8%, 38.0% and 41.7%, respectively. As the voltage increased from 0.500 V·cm?1 to 2.00 V·cm?1, the electroosmotic flux increased accordingly, resulting in a maximum mobility of 44.4%. In the remediation area, a bowl-shaped distribution occurred for the phenanthrene concentration. The simulation calculation determined that phenanthrene concentration reached a minimum value of 2.14 mol·m?3 in the middle region close to the anode, and the maximum mobility was 38.0% accordingly. The simulated results for phenanthrene migration and distribution were in a good agreement with the experimental results, which verified that the applicability of the developed model in the electrokinetic remediation of soil contaminated by polycyclic aromatic hydrocarbon. Key words:phenanthrene/ soil electrokinetic remediation/ migration model/ numerical simulation.
图1电动力学实验装置 Figure1.Schematic diagram of electrokinetic experimental device
LóPEZ-VIZCAíNO R, YUSTRES A, SáEZ C, et al. Effect of polarity reversal on the enhanced electrokinetic remediation of 2, 4-D-polluted soils: A numerical study[J]. Electrochimica Acta, 2017, 258: 414-422. doi: 10.1016/j.electacta.2017.11.077
[3]
ALCáNTARA M T, GóMEZ J, PAZOS M, et al. Electrokinetic remediation of PAH mixtures from kaolin[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 1156-1160.
PARK J Y, LEE H H, KIM S J, et al. Surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite[J]. Journal of Hazardous Materials, 2007, 140(1/2): 230-236.
[6]
KIM S O, MOON S H, KIM K W. Removal of heavy metals from soils using enhanced electrokinetic soil processing[J]. Water, Air & Soil Pollution, 2001, 125(1): 259-272.
[7]
WANG S, LINRUI L, CHEN S, et al. On one multidimensional compressible nonlocal model of the dissipative QG equations[J]. Discrete and Continuous Dynamical Systems-Series S, 2017, 7(5): 1111-1132.
[8]
JACOBS R A, PROBSTEIN R F. Two-dimensional modeling of electroremediation[J]. AIChE Journal, 2010, 42(6): 1685-1696.
[9]
LóPEZ-VIZCAíNO R, YUSTRES A, ASENSIO L, et al. Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning[J]. Chemosphere, 2018, 199: 477-485. doi: 10.1016/j.chemosphere.2018.02.038
[10]
MASI M, CECCARINI A, IANNELLI R. Multispecies reactive transport modelling of electrokinetic remediation of harbour sediments[J]. Journal of Hazardous Materials, 2016, 326(1): 187-196.
[11]
PAZ-GARCIA J, BAEK K, ALSHAWABKEH I D, et al. A generalized model for transport of contaminants in soil by electric fields[J]. Environmental Letters, 2012, 47(2): 308-318.
[12]
OTTOSEN L M, CHRISTENSEN I V, SKIBSTED G, et al. Development of electrode units for electrokinetic desalination of masonry and pilot scale test at three locations for removal of chlorides[J]. European Journal of Immunology, 2010, 36(11): 2928-2938.
[13]
RIBEIRO A B, RODRíGUEZMAROTO J M, MATEUS E P, et al. Removal of organic contaminants from soils by an electrokinetic process: The case of atrazine. Experimental and modeling[J]. Chemosphere, 2005, 59(9): 1229-1239. doi: 10.1016/j.chemosphere.2004.11.054
[14]
CANG L, FAN G P, ZHOU D M, et al. Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and pH control[J]. Chemosphere, 2013, 90(8): 2326-2331. doi: 10.1016/j.chemosphere.2012.10.062
[15]
LóPEZ-VIZCAíNOA R, YUSTRES A, LEóN M J, et al. Multiphysics implementation of electrokinetic remediation models for natural soils and porewaters[J]. Electrochimica Acta, 2017, 225: 93-104. doi: 10.1016/j.electacta.2016.12.102
[16]
TADIMETI J G D, CHATTOPADHYAY S. Physico-chemical local equilibrium influencing cation transport in electrodialysis of multi-ionic solutions[J]. Desalination, 2016, 385: 93-105. doi: 10.1016/j.desal.2016.02.016
[17]
MOHAMED A M O, PALEOLOGOS E K. Chapter 14 Electrical Properties of soils[EB/OL]. [2019-10-23]. http: //www.sciencedireet.com/science/article/pii/8978012804830600014.
[18]
WIGGER C, LOON L V. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks[J]. Journal of Contaminant Hydrology, 2018, 213: 40-48. doi: 10.1016/j.jconhyd.2018.05.001
KARMEGAM U, CHIDAMBARAM S, PRASANNA M V, et al. A study on the mixing proportion in groundwater samples by using piper diagram and Phreeqc model[J]. Acta Geochimica, 2011, 30(4): 490-495.
[23]
YUSTRES á, LóPEZ-VIZCAíNO R, SáEZ C, et al. Water transport in electrokinetic remediation of unsaturated kaolinite. Experimental and numerical study[J]. Separation and Purification Technology, 2018, 192: 196-204. doi: 10.1016/j.seppur.2017.10.009
1.College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China 2.Hubei Province Key Laboratory for Efficient Utilization and Agglomeration for Metallurgic Mineral Resources, Wuhan 430081, China 3.Department of Chemical Engineering, University of Western Australia School of Engineering, Western Australia 6009, Australia Received Date: 2018-12-27 Accepted Date: 2019-12-12 Available Online: 2020-03-25 Keywords:phenanthrene/ soil electrokinetic remediation/ migration model/ numerical simulation Abstract:In order to address the problem of repairing phenanthrene-contaminated soil, both laboratory simulation and experiments were conducted to study the phenanthrene migration in soil under electrodynamics. Electroosmotic flow, electromigration, convection, and dispersion were determined to be the four main processes to affect phenanthrene migration. A phenanthrene migration model in contaminated soil under electrodynamics was established. The phenanthrene migration process was simulated using COMSOL Multiphysics 5.3 software, the migration equations and the selected parameters. Results showed that at the porosities of 0.330, 0.380, 0.430, and 0.480, the maximum mobility of phenanthrene were 31.9%, 34.8%, 38.0% and 41.7%, respectively. As the voltage increased from 0.500 V·cm?1 to 2.00 V·cm?1, the electroosmotic flux increased accordingly, resulting in a maximum mobility of 44.4%. In the remediation area, a bowl-shaped distribution occurred for the phenanthrene concentration. The simulation calculation determined that phenanthrene concentration reached a minimum value of 2.14 mol·m?3 in the middle region close to the anode, and the maximum mobility was 38.0% accordingly. The simulated results for phenanthrene migration and distribution were in a good agreement with the experimental results, which verified that the applicability of the developed model in the electrokinetic remediation of soil contaminated by polycyclic aromatic hydrocarbon.