3.中国科学院生态环境研究中心,北京 100085
1.Guangzhou Shipyard International Company Limited (GSI), Guangzhou 511462, China
2.School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
3.Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
膜过滤技术作为一种高效、低能耗、二次污染少的技术,已广泛用于工业废水的深度净化与再生中。传统有机膜在工业废水深度净化处理中存在着耐氧化性不足、使用条件苛刻、膜污染控制困难等问题。同时,膜过滤过程中产生的有机物/无机盐混合浓水也阻碍了浓水的资源化利用。氧化石墨烯膜作为下一代的膜材料具有更好的耐氧化性、亲水性,且制备成本低廉,对有机物与无机盐的分离性能优异,有望在工业废水的深度净化与回用中得到广泛应用。在阅读文献资料的基础上,梳理了氧化石墨烯膜的制备、性能特点,采用氧化石墨烯膜过滤技术进行工业废水深度净化的研究现状及尚待解决的问题,如材料的稳定性能及膜污染控制等。最后指出氧化石墨烯膜过滤技术在未来应逐步实现应用放大,并在工业废水深度净化、实现水与资源回用,达到近“零排放”的水处理过程中发挥重要作用。
Membrane filtration technology as a technology with high efficiency, low energy consumption and less generation of new pollutants, has been widely used in the deep purification and regeneration of industrial wastewater. Traditional organic membranes have beed disadvantaged by insufficient oxidation resistance, harsh use conditions, and difficult membrane fouling control in the deep purification of industrial wastewater. At the same time, the resultant concentrated organic and inorganic salts in the membrane filtration process also hinders the resource utilization of the concentrated streams. As an emerging membrane material, graphene oxide membrane has better oxidation resistance and hydrophilicity. Meanwhile, its preparation cost is relatively low, and the separation characteristics of organic matter and inorganic salt is better. It is expected to be widely used in the deep purification and reuse of industrial wastewater. Based on the literature which has been read, this article summarizes the preparation and performance characteristics of graphene oxide membranes, as well as the current research status and problems by using graphene oxide membrane filtration technology in industrial wastewater deep purification, such as the stability of materials and membrane fouling control, etc. Finally, it is suggested that graphene oxide membrane filtration technology should gradually achieve application amplification in the future, and exploring its role in deep purification of industrial wastewater, realization of water and resource reuse, and nearly “zero discharge” water treatment process.
.
Behavior of GO during membrane formation
氧化石墨烯与有机膜活性层共价结合的反应方案
Reaction scheme for covalent binding of graphene oxide to the active layer of organic membranes
Self-assembly process schematic of GO membrane
/GO membrane and its regulatory mechanism
Permeation mode of hydrated ions and water molecules along graphene layer
Fabrication process of GO/FLG/PVA membrane
Technical schematic of graphene oxide membrane
Preparation of GO-PVAm-silica membranes
Technical schematic of inorganic crosslinking of graphene oxide membrane
Technical schematic of GO-coated PA membrane fouling control
Technical schematic of GO membrane fouling control
Coupling process of bioreactor-membrane separation system
[1] | 韩京龙. 面向废水深度净化的氧化石墨烯膜制备及其膜污染控制研究[D]. 北京: 中国科学院大学, 2018. |
[2] | GADIPELL C, PEREZ G A, YADAV G D, et al. Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse[J]. Industrial & Engineering Chemistry Research, 2014, 53(29): 11571-11592. |
[3] | HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: Possible approaches[J]. Journal of Environment Management, 2016, 182: 351-366. |
[4] | DIYAUDDEEN B H, DAUD W M, ABDUL A R. Treatment technologies for petroleum refinery effluents: A review[J]. Process Safety and Environmental Protection, 2011, 89(2): 95-105. doi: 10.1016/j.psep.2010.11.003 |
[5] | JI Q, TABASSUM S, HENA S, et al. A review on the coal gasification wastewater treatment technologies: Past, present and future outlook[J]. Journal of Cleaner Production, 2016, 126: 38-55. doi: 10.1016/j.jclepro.2016.02.147 |
[6] | PAL P, KUMAR R. Treatment of coke wastewater: A critical review for developing sustainable management strategies[J]. Separation & Purification Reviews, 2013, 43: 89-123. |
[7] | LOFRANO G, MERIC S, ZENGIN G. E, et al Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review[J]. Science of the Total Environment, 2013, 461: 265-281. |
[8] | ASHRAFI O, YERUSHALMI L, HAGHIGHAT F. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission[J]. Journal of Environment Management, 2015, 158: 146-157. |
[9] | OLLER I, MALATO S, SANCHEZ J A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination: A review[J]. Science of the Total Environment, 2011, 409: 4141-4166. doi: 10.1016/j.scitotenv.2010.08.061 |
[10] | RANADE V V, BHANDARI V M. Industrial Wastewater Treatment, Recycling and Reuse[M]. Oxford: Butterworth-Heinemann Elsevier Ltd., 2014. |
[11] | SHON H. K, VIGNESWARAN S, SNYDER S A Effluent organic matter (EfOM) in wastewater: Constituents, effects, and treatment[J]. Critical Reviews in Environmental Science and Technology, 2006, 36: 327-374. doi: 10.1080/10643380600580011 |
[12] | XIE W M, NI B J, SHENG G P, et al. Quantification and kinetic characterization of soluble microbial products from municipal wastewater treatment plants[J]. Water Research, 2016, 88: 703-710. doi: 10.1016/j.watres.2015.10.065 |
[13] | SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001 |
[14] | LASPIDOU C S, RITTMANN B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36: 2711-2720. doi: 10.1016/S0043-1354(01)00413-4 |
[15] | DOEDERER K, GERNJAK W, WEINBERG H S, et al. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water[J]. Water Research, 2014, 48: 218-228. doi: 10.1016/j.watres.2013.09.034 |
[16] | JIANG J Q, ZHOU Z, SHARMA V K. Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in wastewater: A review from global views[J]. Microchemical Journal, 2013, 110: 292-300. doi: 10.1016/j.microc.2013.04.014 |
[17] | PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84. doi: 10.1080/10643380500326564 |
[18] | 徐德志, 相波, 邵建颖, 等. 膜技术在工业废水处理中的应用研究进展[J]. 工业水处理, 2006, 26(4): 1-4. doi: 10.3969/j.issn.1005-829X.2006.04.001 |
[19] | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1: 16018. doi: 10.1038/natrevmats.2016.18 |
[20] | HEGAB H M, WIMALASIRI Y, GINIC M M, et al. Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan[J]. Desalination, 2015, 365: 99-107. doi: 10.1016/j.desal.2015.02.029 |
[21] | CHOI W, CHOI J, BANG J, et al. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J]. ACS Applied Material & Interfaces, 2013, 5: 12510-12519. |
[22] | COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters, 2012, 12(7): 3602-3608. doi: 10.1021/nl3012853 |
[23] | LEE C, WEI X, KVSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. doi: 10.1126/science.1157996 |
[24] | HUMMERS W S, OFFEMAN R E. Preparation of graphtic oxide[J]. Journal of American Chemical Society, 1958, 80: 1339-1339. doi: 10.1021/ja01539a017 |
[25] | MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. doi: 10.1021/nn1006368 |
[26] | GANESH B M, ISLOOR A M, ISMAIL A F, et al. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane[J]. Desalination, 2013, 313(7): 199-207. |
[27] | PERREAULT F, TOULSEY M E, ELILEMECH M. Thin-Film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets[J]. Environmental Science & Technology, 2014, 1(1): 71-76. |
[28] | HU M, MI B X. Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology, 2013, 47(8): 3715-3723. |
[29] | MI B X. Graphene oxide membranes for ionic and molecular sieving[J]. Science, 2014, 343(6172): 740-742. doi: 10.1126/science.1250247 |
[30] | AI J, YANG L, LIAO G Y, et al. Applications of Graphene oxide blended poly (vinylidene fluoride) membranes for the treatment of organic matters and its membrane fouling investigation[J]. Applied Surface Science, 2018, 455: 502-512. doi: 10.1016/j.apsusc.2018.05.162 |
[31] | LIANG B, ZHANG P, WANG J Q, et al. Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification[J]. Carbon, 2016, 103: 94-100. doi: 10.1016/j.carbon.2016.03.001 |
[32] | HAN J L, XIA X, MUHAMMAD R H, et al. Functional graphene oxide membrane preparation for organics/inorganic salts mixture separation aiming at advanced treatment of refractory wastewater[J]. Science of the Total Environment, 2018, 628: 261-270. |
[33] | GOGOI A, KONCH T J, RAIDONJIA K, et al. Water and salt dynamics in multilayer graphene oxide (GO) membrane: Role of lateral sheet dimensions[J]. Journal of Membrane Science, 2018, 563: 785-793. doi: 10.1016/j.memsci.2018.06.031 |
[34] | 方彦彦, 李倩, 王晓琳. 解读纳滤: 一种具有纳米尺度效应的分子分离操作[J]. 化学进展, 2012, 24(5): 863-870. |
[35] | PEREZ-GONZALEZ A, URTIAGA A M, IBANEZ R, et al. State of the art and review on the treatment technologies of water reverse osmosis concentrates[J]. Water Research, 2012, 46(2): 267-283. doi: 10.1016/j.watres.2011.10.046 |
[36] | CHENG P, CHEN Y, GU Y H, et al. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving[J]. Journal of Membrane Science, 2019, 591: 117308. doi: 10.1016/j.memsci.2019.117308 |
[37] | ABRAHAM J, VASU K S, WILLIAMS C H, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12: 546-550. doi: 10.1038/nnano.2017.21 |
[38] | GOMEZ A M, SILVA R C, MURAMATSU H, et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes[J]. Nature Nanotechnology, 2017, 12: 1083-1088. doi: 10.1038/nnano.2017.160 |
[39] | MO Y H, TIRAFERRI A, YIP N Y, et al. Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups[J]. Environmental Science & Technology, 2012, 46(24): 13253-13261. |
[40] | PAN F S, LI Y, SONG Y M, et al. Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations[J]. Journal of Membrane Science, 2020, 595: 117486. doi: 10.1016/j.memsci.2019.117486 |
[41] | YANG J, GONG D, LI G, et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules[J]. Advanced Materials, 2018, 30(16): e1705775. doi: 10.1002/adma.201705775 |
[42] | QIAN Y, ZHOU C, HUANG A. Cross-linking modification with diamine monomers to enhance desalination performance of graphene oxide membranes[J]. Carbon, 2018, 136: 28-37. doi: 10.1016/j.carbon.2018.04.062 |
[43] | HUNG W, CHANG S, LECAROS R G, et al. Fabrication of hydrothermally reduced graphene oxide/chitosan composite membranes with a lamellar structure on methanol dehydration[J]. Carbon, 2017, 117: 112-119. doi: 10.1016/j.carbon.2017.02.088 |
[44] | BAIG M I, INGOLE P G, JEON J, et al. Water vapor transport properties of interfacially polymerized thin film nanocomposite membranes modified with graphene oxide and GO-TiO2 nanofillers[J]. Chemical Engineering Journal, 2019, 373: 1190-1202. doi: 10.1016/j.cej.2019.05.122 |
[45] | HUNG W S, TSOU C H, DE G M, et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varyingd-spacing[J]. Chemistry of Materials, 2014, 26: 2983-2990. doi: 10.1021/cm5007873 |
[46] | LIN H, LI Y F, ZHU J H, et al. Cross-linked GO membranes assembled with GO nanosheets of differently sized lateral dimensions for organic dye and chromium separation[J]. Journal of Membrane Science, 2020, 598: 117789. doi: 10.1016/j.memsci.2019.117789 |
[47] | JANG J W, PARK I S, CHEE S S, et al. Graphene oxide nanocomposite membrane cooperatively cross-linked by monomer and polymer overcoming the trade-off between flux and rejection in forward osmosis[J]. Journal of Membrane Science, 2020, 598: 117684. doi: 10.1016/j.memsci.2019.117684 |
[48] | ZHANG J G, XU Z W, SHAN M J, et al. Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes[J]. Journal of Membrane Science, 2013, 448: 81-92. doi: 10.1016/j.memsci.2013.07.064 |
[49] | LIU T, YANG B, GRAHAM N, et al. Trivalent metal cation cross-linked graphene oxide membranes for NOM removal in water treatment[J]. Journal of Membrane Science, 2017, 542: 31-40. doi: 10.1016/j.memsci.2017.07.061 |
[50] | JIA Z Q, WANG Y, SHI W X, et al. Diamines cross-linked graphene oxide freestanding membranes for ion dialysis separation[J]. Journal of Membrane Science, 2016, 520: 139-144. doi: 10.1016/j.memsci.2016.07.042 |
[51] | CHENG C, SHEN L D, YU X F, et al. Robust construction of graphene oxide barrier layer on nanofibrous substrate assisted by flexible poly(vinylacohol) for efficient pervaporation desalination[J]. Journal of Materials Chemistry A, 2017, 5(7): 3558-3568. doi: 10.1039/C6TA09443K |
[52] | FENG B, XU K, HUANG A S, et al. Covalent synthesis of three-dimensional graphene oxide framework (GOF) membrane for seawater desalination[J]. Desalination, 2016, 394: 123-130. doi: 10.1016/j.desal.2016.04.030 |
[53] | XU K, FENG B, ZHOU C, et al. Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination[J]. Journal of Membrane Science, 2016, 146: 159-165. |
[54] | AN Z, COMPTON O C, PUTZ K W, et al. Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films[J]. Advanced Materials, 2011, 23(33): 3842-3846. |
[55] | HAN J L, HAIDER M R, LIU M J, et al. Borate inorganic cross-linked durable graphene oxide membrane preparation and membrane fouling control[J]. Environmental Science & Technology, 2019, 53(3): 1501-1508. |
[56] | FLEMMING H C. Reverse osmosis membrane biofouling[J]. Experimental Thermal and Fluid Science, 1997, 14(4): 382-391. doi: 10.1016/S0894-1777(96)00140-9 |
[57] | WANG J, GAO X L, YU H, et al. Accessing of graphene oxide (GO) nanofiltration membranes for microbial and fouling resistance[J]. Separation and Purification Technology, 2019, 215: 91-101. doi: 10.1016/j.seppur.2019.01.018 |
[58] | SCHAFER A I, FANE A G, WAITE T D, et al. Nanofiltration: Principles and Applications[M]. London: Elsevier, 2005. |
[59] | WAGNER V, SAGLE A C, SHARMA M M, et al. Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance[J]. Journal of Membrane Science, 2011, 367(1/2): 273-287. |
[60] | KARKOOTI A, YAZDI A Z, CHEN P, et al. Development of advanced nanocomposite membranes using graphene nanoribbons and nanosheets for water treatment[J]. Journal of Membrane Science, 2018, 560: 97-107. doi: 10.1016/j.memsci.2018.04.034 |
[61] | HAN J L, ZHANG D P, JIANG W R, et al. Tuning the functional groups of a graphene oxide membrane by ·OH contributes to the nearly complete prevention of membrane fouling[J]. Journal of Membrane Science, 2019, 576: 190-197. doi: 10.1016/j.memsci.2018.12.055 |
[62] | LIU X D, YUAN H K, WANG C C, et al. A novel PVDF/PFSA-g-GO ultrafiltration membrane with enhanced permeation and antifouling performances[J]. Separation and Purification Technology, 2020, 233: 116038. doi: 10.1016/j.seppur.2019.116038 |
[63] | RAHIMI A, MAHDAVI H. Zwitterionic-functionalized GO/PVDF nanocomposite membranes with improved anti-fouling properties[J]. Journal of Water Process Engineering, 2019, 32: 100960. doi: 10.1016/j.jwpe.2019.100960 |
[64] | YUAN X T, XU C X, GENG H Z, et al. Multifunctional PVDF/CNT/GO mixed matrix membranes for ultrafiltration and fouling detection[J]. Journal of Hazardous Materials, 2020, 384: 120978. doi: 10.1016/j.jhazmat.2019.120978 |
[65] | WU Q, CHEN G E, SUN W G, et al. Bio-inspired GO-Ag/PVDF/F127 membrane with improved anti-fouling for natural organic matter (NOM) resistance[J]. Chemical Engineering Journal, 2017, 313: 450-460. doi: 10.1016/j.cej.2016.12.079 |
[66] | IGBINIGUN E, FENNELL Y, MALAISAMY R, et al. Graphene oxide functionalized polyethersulfone membrane to reduce organic fouling[J]. Journal of Membrane Science, 2016, 514: 518-526. doi: 10.1016/j.memsci.2016.05.024 |
[67] | MAHLANGU O T, NACKAERTS R, THWALA J M, et al. Hydrophilic fouling-resistant GO-ZnO/PES membranes for wastewater reclamation[J]. Journal of Membrane Science, 2017, 524: 43-55. doi: 10.1016/j.memsci.2016.11.018 |