2.中国科学院大学,北京 100049
1.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
在机械加工和制造业中,切削液被广泛应用于工件的冷却、清洗、防锈和润滑,产生大量废切削液。切削液废水中含有大量乳化油、添加剂(表面活性剂、缓蚀剂、消泡剂),以及废油、粉尘和金属屑等杂质,排放前需经过严格的处理。切削液废水处理大致分为物理、化学和生物法3大类。不同的处理方法有各自的优缺点。物理法中的膜分离技术具有效率高、占地小、无二次污染等优点,是处理切削液废水的有效技术;但膜污染问题限制了膜过滤技术的大规模引用,开发机械强度高、亲水性的新型膜材料是重要的研究方向。传统的混凝法处理成本较低,然而混凝产生的大量矾花沉淀还需进行二次处理。氧化法能够将污染物矿化为无害无机物,但处理成本很高。由于切削液废水的成分复杂,具有生物毒性,无法对其进行单独的生物处理;可将生物处理单元与氧化过程联用,先通过氧化法提高废水的可生化性,再进行成本低廉的生物处理;这样既能够节约氧化剂用量,也可完成切削液废水的深度处理。本文在综述切削液废水处理技术的研究进展基础上,提出了现有处理工艺中存在的问题,探讨了解决的思路,可为切削液废水处理技术的发展提供参考。
In machining and manufacturing, cutting fluids are widely used for cooling, cleaning, rust prevention and lubrication of workpieces, resulting in a great amount of waste cutting fluids. Cutting fluid wastewater contains emulsified oil, additives (surfactants, corrosion inhibitors, defoamers), and impurities such as waste oil, dust, and metal chips, which must be appropriately treated prior to environmental discharge. Cutting fluid wastewater treatment could be divided into three main approaches: physical, chemical and biological methods. Different treatment methods have distinct advantages and disadvantages. Membrane separation is a typical physical treatment approach, carrying the advantages of high efficiency, small area, and no secondary pollution, among others, which has been regarded as an effective technology for handling cutting fluid wastewater. Nonetheless, the problem of membrane pollution limits the large-scale application of membrane filtration technology. The development of high mechanical strength, new hydrophilic membrane materials are an important research direction. The traditional coagulation method is a chemical method, and the treatment cost is relatively low. Nevertheless, a large amount of alum precipitation produced by coagulation needs to be processed twice. The oxidation method can mineralize pollutants into harmless inorganic substances, but the processing cost is high. Because the composition of cutting fluid wastewater is complex and toxic, it cannot be subjected to separate biological treatment. The biological treatment unit can be combined with the oxidation process, and the biodegradability of the wastewater can be improved by the oxidation method, and then the low-cost biological treatment can be carried out. This can not only save the amount of oxidant but also complete the advanced treatment of cutting fluid wastewater. Based on the state-of-the-arts of cutting fluid wastewater treatment technology, this article puts forward the existing problems in current treatment processes, and discusses potentials to optimize cutting fluid wastewater treatment technology.
.
Mechanism of surfactant stabilizing oil droplets
Schematic illustration of a typical membrane system for the treatment of oily wastewater
Diaphragm of ultrafiltration process
Schematic illustration of PVDF superhydrophilic film prepared by dopamine-KH550 crosslinking and TiO
Schematic illustration of electrocoagulation
Schematic illustration of two electrochemical oxidation mechanisms
[1] | CETIN M H, KILINCARSLAN S K. Effects of cutting fluids with nano-silver and borax additives on milling performance of aluminium alloys[J]. Journal of Manufacturing Processes, 2020, 50: 170-182. doi: 10.1016/j.jmapro.2019.12.042 |
[2] | COCA-PRADOS J, GUTIéRREZ-CERVELLó G. Water Purification and Management[M]. Dordrecht the Netherlands: Springer Press, 2011. |
[3] | SHEN J, LIU B, WU J, et al. Characterization of fluorescent dissolved organic matters in metalworking fluid by fluorescence excitation-emission matrix and high-performance liquid chromatography[J]. Chemosphere, 2020, 239: 124703. doi: 10.1016/j.chemosphere.2019.124703 |
[4] | GREELEY M, RAJAGOPALAN N. Impact of environmental contaminants on machining properties of metalworking fluids[J]. Tribology International, 2004, 37(4): 327-332. doi: 10.1016/j.triboint.2003.11.001 |
[5] | AHMAD T, GURIA C, MANDAL A. Synthesis, characterization and performance studies of mixed-matrix poly(vinyl chloride)-bentonite ultrafiltration membrane for the treatment of saline oily wastewater[J]. Process Safety and Environmental Protection, 2018, 116: 703-717. doi: 10.1016/j.psep.2018.03.033 |
[6] | AL-HUSAINI I S, YUSOFF A R M, LAU W J, et al. Fabrication of polyethersulfone electrospun nanofibrous membranes incorporated with hydrous manganese dioxide for enhanced ultrafiltration of oily solution[J]. Separation and Purification Technology, 2019, 212: 205-214. doi: 10.1016/j.seppur.2018.10.059 |
[7] | NAJIHA M S, RAHMAN M M, YUSOFF A R. Environmental impacts and hazards associated with metal working fluids and recent advances in the sustainable systems: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1008-1031. doi: 10.1016/j.rser.2016.01.065 |
[8] | PARK R M. Risk assessment for metalworking fluids and cancer outcomes[J]. American Journal of Industrial Medicine, 2018, 61(3): 198-203. doi: 10.1002/ajim.22809 |
[9] | SOKOVI? M, MIJANOVI? K. Ecological aspects of the cutting fluids and its influence on quantifiable parameters of the cutting processes[J]. Journal of Materials Processing Technology, 2001, 109(1/2): 181-189. |
[10] | 李延珍. 废金属切削液中的废水处理工艺的研究[D]. 长春: 长春工业大学, 2016. |
[11] | 环境保护部. 国家危险废物名录[S]. 2016. |
[12] | CHENG C, PHIPPS D, ALKHADDAR R M. Treatment of spent metalworking fluids[J]. Water Research, 2005, 39(17): 4051-4063. doi: 10.1016/j.watres.2005.07.012 |
[13] | DEBNATH S, REDDY M M, YI Q S. Environmental friendly cutting fluids and cooling techniques in machining: A review[J]. Journal of Cleaner Production, 2014, 83: 33-47. doi: 10.1016/j.jclepro.2014.07.071 |
[14] | WICKRAMASINGHE K C, SASAHARA H, RAHIM E A, et al. Green metalworking fluids for sustainable machining applications: A review[J]. Journal of Cleaner Production, 2020, 257: 120552. doi: 10.1016/j.jclepro.2020.120552 |
[15] | YALCINKAYA F, BOYRAZ E, MARYSKA J, et al. A review on membrane technology and chemical surface modification for the oily wastewater treatment[J]. Materials, 2020, 13(2): 493. doi: 10.3390/ma13020493 |
[16] | MILI? J K, MURI? A, PETRINI? I, et al. Recent developments in membrane treatment of spent cutting-oils: A review[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 7603-7616. |
[17] | DEMIRBAS E, KOBYA M. Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes[J]. Process Safety and Environmental Protection, 2017, 105: 79-90. doi: 10.1016/j.psep.2016.10.013 |
[18] | BUNTURNGPRATOOMRAT A, PORNSUNTHORNTAWEE O, NITIVATTANANON S, et al. Cutting oil removal by continuous froth flotation with packing media under low interfacial tension conditions[J]. Separation and Purification Technology, 2013, 107: 118-128. doi: 10.1016/j.seppur.2013.01.024 |
[19] | HILAL N, BUSCA G, HANKINS N, et al. The use of ultrafiltration and nanofiltration membranes in the treatment of metal-working fluids[J]. Desalination, 2004, 167(1/2/3): 227-238. |
[20] | MACADAM J, OZGENCIL H, AUTIN O, et al. Incorporating biodegradation and advanced oxidation processes in the treatment of spent metalworking fluids[J]. Environmental Technology, 2012, 33(22/23/24): 2741-2750. |
[21] | SUN Y J, ZHU C Y, ZHENG H L, et al. Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment[J]. Chemical Engineering Research and Design, 2017, 119: 23-32. doi: 10.1016/j.cherd.2017.01.009 |
[22] | PADAKI M, MURALI R S, ABDULLAH M S, et al. Membrane technology enhancement in oil-water separation: A review[J]. Desalination, 2015, 357: 197-207. doi: 10.1016/j.desal.2014.11.023 |
[23] | PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. doi: 10.1126/science.aab0530 |
[24] | PENG J X, LIU Q X, XU Z H, et al. Novel magnetic demulsifier for water removal from diluted bitumen emulsion[J]. Energy & Fuels, 2012, 26(5): 2705-2710. |
[25] | ROMANOVA Y N, MARYUTINA T А, MUSINA N S, et al. Demulsification of water-in-oil emulsions by exposure to magnetic field[J]. Journal of Petroleum Science and Engineering, 2019, 179: 600-605. doi: 10.1016/j.petrol.2019.05.002 |
[26] | XU X, CAO D, LIU J, et al. Research on ultrasound-assisted demulsification/dehydration for crude oil[J]. Ultrasonics Sonochemistry, 2019, 57: 185-192. doi: 10.1016/j.ultsonch.2019.05.024 |
[27] | MOOSAI R, DAWE R A. Gas attachment of oil droplets for gas flotation for oily wastewater cleanup[J]. Separation and Purification Technology, 2003, 33(3): 303-314. doi: 10.1016/S1383-5866(03)00091-1 |
[28] | AN C, HUANG G, YAO Y, et al. Emerging usage of electrocoagulation technology for oil removal from wastewater: A review[J]. Science of the Total Environment, 2017, 579: 537-556. doi: 10.1016/j.scitotenv.2016.11.062 |
[29] | RUBIO J, SOUZA M L, SMITH R W. Overview of flotation as a wastewater treatment technique[J]. Minerals Engineering, 2002, 15(3): 139-155. doi: 10.1016/S0892-6875(01)00216-3 |
[30] | MOFRAD M M G, POURZAMANI H, AMIN M M, et al. In situ treatment of metalworking wastewater by chemical addition-dissolved air flotation coupled with UV, H2O2 & ZnO[J]. Heliyon, 2020, 6(1): e03091. doi: 10.1016/j.heliyon.2019.e03091 |
[31] | CHAKRABARTY B, GHOSHAL A K, PURKAIT M K. Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane[J]. Journal of Membrane Science, 2008, 325(1): 427-437. doi: 10.1016/j.memsci.2008.08.007 |
[32] | DUONG P H, CHUNG T S, WEI S, et al. Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil-water separation process[J]. Environmental Science & Technology, 2014, 48(8): 4537-4545. |
[33] | LU D W, ZHANG T, MA J. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets[J]. Environmental Science & Technology, 2015, 49(7): 4235-4244. |
[34] | PRINCE J A, BHUVANA S, ANBHARASI V, et al. Ultra-wetting graphene-based PES ultrafiltration membrane: A novel approach for successful oil-water separation[J]. Water Research, 2016, 103: 311-318. doi: 10.1016/j.watres.2016.07.042 |
[35] | YANG Y, RAZA A, BANAT F, et al. The separation of oil in water (O/W) emulsions using polyether sulfone & nitrocellulose microfiltration membranes[J]. Journal of Water Process Engineering, 2018, 25: 113-117. doi: 10.1016/j.jwpe.2018.07.007 |
[36] | YUAN T, MENG J, HAO T, et al. A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14896-14904. |
[37] | 杨振生, 冯立建, 赵改, 等. 基于精密超滤法的废切削液处理与回用研究[J]. 现代化工, 2019, 39(11): 158-162. |
[38] | HESAMPOUR M, KRZYZANIAK A, NYSTR?M M. Treatment of waste water from metal working by ultrafiltration, considering the effects of operating conditions[J]. Desalination, 2008, 222(1/2/3): 212-221. |
[39] | 郑帅飞, 冯凡让, 胡元娟, 等. 振动膜技术处理切削液废水的研究[J]. 广东化工, 2019, 46(1): 236-237. |
[40] | POPOVI? S, KARAD?I? M, CAKL J. Optimization of ultrafiltration of cutting oil wastewater enhanced by application of twisted tapes: Response surface methodology approach[J]. Journal of Cleaner Production, 2019, 231: 320-330. doi: 10.1016/j.jclepro.2019.05.184 |
[41] | HUANG S, RAS R H A, TIAN X L. Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling[J]. Current Opinion in Colloid & Interface Science, 2018, 36: 90-109. |
[42] | MILI? J K, DRA?EVI? E, KO?UTI? K, et al. Microfiltration of cutting-oil emulsions enhanced by electrocoagulation[J]. Desalination and Water Treatment, 2015, 57(24): 10959-10968. |
[43] | CHANG Q B, ZHOU J E, WANG Y Q, et al. Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion[J]. Journal of Membrane Science, 2014, 456: 128-133. doi: 10.1016/j.memsci.2014.01.029 |
[44] | LI L N, DING L H, TU Z H, et al. Recovery of linseed oil dispersed within an oil-in-water emulsion using hydrophilic membrane by rotating disk filtration system[J]. Journal of Membrane Science, 2009, 342(1/2): 70-79. |
[45] | WANG Y X, LI Y J, YANG H, et al. Super-wetting, photoactive TiO2 coating on amino-silane modified PAN nanofiber membranes for high efficient oil-water emulsion separation application[J]. Journal of Membrane Science, 2019, 580: 40-48. doi: 10.1016/j.memsci.2019.02.062 |
[46] | RAJASEKHAR T, TRINADH M, VEERA B P, et al. Oil-water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group[J]. Journal of Membrane Science, 2015, 481: 82-93. doi: 10.1016/j.memsci.2015.01.030 |
[47] | SHI H, HE Y, PAN Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation[J]. Journal of Membrane Science, 2016, 506: 60-70. doi: 10.1016/j.memsci.2016.01.053 |
[48] | ZHANG F, GAO S J, ZHU Y Z, et al. Alkaline-induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for high-efficient oil/water separation[J]. Journal of Membrane Science, 2016, 513: 67-73. doi: 10.1016/j.memsci.2016.04.020 |
[49] | ZUO J H, CHENG P, CHEN X F, et al. Ultrahigh flux of polydopamine-coated PVDF membranes quenched in air via thermally induced phase separation for oil/water emulsion separation[J]. Separation and Purification Technology, 2018, 192: 348-359. doi: 10.1016/j.seppur.2017.10.027 |
[50] | GAO Y, LI Z H, CHENG B, et al. Superhydrophilic poly(p-phenylene sulfide) membrane preparation with acid/alkali solution resistance and its usage in oil/water separation[J]. Separation and Purification Technology, 2018, 192: 262-270. doi: 10.1016/j.seppur.2017.09.065 |
[51] | MATOS M, GUTIéRREZ G, LOBO A, et al. Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes[J]. Journal of Membrane Science, 2016, 520: 749-759. doi: 10.1016/j.memsci.2016.08.037 |
[52] | TSURU T, NARITA M, SHINAGAWA R, et al. Nanoporous titania membranes for permeation and filtration of organic solutions[J]. Desalination, 2008, 233(1/2/3): 1-9. |
[53] | ZHOU J E, CHANG Q B, WANG Y Q, et al. Separation of stable oil-water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane[J]. Separation and Purification Technology, 2010, 75(3): 243-248. doi: 10.1016/j.seppur.2010.08.008 |
[54] | MURI? A, PETRINI? I, CHRISTENSEN M L. Comparison of ceramic and polymeric ultrafiltration membranes for treating wastewater from metalworking industry[J]. Chemical Engineering Journal, 2014, 255: 403-410. doi: 10.1016/j.cej.2014.06.009 |
[55] | AGHILI F, GHOREYSHI A A, RAHIMPOUR A, et al. New chemistry for mixed matrix membranes: Growth of continuous multilayer UiO-66-NH2 on UiO-66-NH2-based polyacrylonitrile for highly efficient separations[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7825-7838. |
[56] | GAO J, WEI W, YIN Y, et al. Continuous ultrathin UiO-66-NH2 coatings on a polymeric substrate synthesized by a layer-by-layer method: A kind of promising membrane for oil-water separation[J]. Nanoscale, 2020, 12(12): 6658-6663. doi: 10.1039/C9NR10049K |
[57] | WU H, CHUA Y S, KRUNGLEVICIUTE V, et al. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption[J]. Journal of the American Chemical Society, 2013, 135(28): 10525-10532. doi: 10.1021/ja404514r |
[58] | LI X, LIU Y, WANG J, et al. Metal-organic frameworks based membranes for liquid separation[J]. Chemical Society Reviews, 2017, 46(23): 7124-7144. doi: 10.1039/C7CS00575J |
[59] | 吴文珍, 景有海. 酸析及混凝法处理切削废水研究[J]. 能源与环境, 2013(2): 78-80. doi: 10.3969/j.issn.1672-9064.2013.02.034 |
[60] | RI?OS G, PAZOS C, COCA J. Destabilization of cutting oil emulsions using inorganic salts as coagulants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 138(2/3): 383-389. |
[61] | YU L, HAN M, HE F. A review of treating oily wastewater[J]. Arabian Journal of Chemistry, 2017, 10: 1913-1922. doi: 10.1016/j.arabjc.2013.07.020 |
[62] | ALWI H, IDRIS J, MUSA M, et al. A preliminary study of banana stem juice as a plant-based coagulant for treatment of spent coolant wastewater[J]. Journal of Chemistry, 2013, 2013: 1-7. |
[63] | 韩卓然, 于静洁, 王少坡, 等. 铝盐和铁盐混凝对切削液废水中有机物的去除特性[J]. 工业水处理, 2018, 38(3): 81-85. |
[64] | CHEN W, PENG J J, DU B, et al. Fabricating a hydrophobic modified flocculant through UVC irradiation initiation for metalworking wastewater treatment[J]. Chemical Engineering Research and Design, 2020, 153: 220-232. doi: 10.1016/j.cherd.2019.10.041 |
[65] | SONG P, YANG Z H, XU H Y, et al. Investigation of influencing factors and mechanism of antimony and arsenic removal by electrocoagulation using Fe-Al electrodes[J]. Industrial & Engineering Chemistry Research, 2014, 53(33): 12911-12919. |
[66] | SAHU O, MAZUMDAR B, CHAUDHARI P K. Treatment of wastewater by electrocoagulation: A review[J]. Environmental Science and Pollution Research, 2014, 21(4): 2397-2413. doi: 10.1007/s11356-013-2208-6 |
[67] | EMAMJOMEH M M, SIVAKUMAR M. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes[J]. Journal of Environmental Management, 2009, 90(5): 1663-1679. doi: 10.1016/j.jenvman.2008.12.011 |
[68] | AVANCINI D O, PERINI M E, DA SILVA PORTO P S. Electrocoagulation using perforated electrodes: An increase in metalworking fluid removal from wastewater[J]. Chemical Engineering and Processing: Process Intensification, 2019, 139: 113-120. doi: 10.1016/j.cep.2019.03.021 |
[69] | KOBYA M, OMWENE P I, UKUNDIMANA Z. Treatment and operating cost analysis of metalworking wastewaters by a continuous electrocoagulation reactor[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103526. doi: 10.1016/j.jece.2019.103526 |
[70] | GUVENC S Y, OKUT Y, OZAK M, et al. Process optimization via response surface methodology in the treatment of metal working industry wastewater with electrocoagulation[J]. Water Science and Technology, 2017, 75(3/4): 833-846. |
[71] | CANIZARES P, JIMENEZ C, MARTINEZ F, et al. The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters[J]. Journal of Hazardous Materials, 2009, 163(1): 158-164. doi: 10.1016/j.jhazmat.2008.06.073 |
[72] | 边艳勇, 谭洪毅. 芬顿氧化处理机加工行业切削液的研究[J]. 环境与发展, 2018, 30(8): 77-78. |
[73] | BRILLAS E, SIRES I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews, 2009, 109(12): 6570-6631. doi: 10.1021/cr900136g |
[74] | RAHIM P S, AZIZ A A R, DAUD W W M A. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 53-69. doi: 10.1016/j.jiec.2014.05.005 |
[75] | AMIN M M, MOFRAD G M M, POURZAMANI H, et al. Treatment of industrial wastewater contaminated with recalcitrant metal working fluids by the photo-Fenton process as post-treatment for DAF[J]. Journal of Industrial and Engineering Chemistry, 2017, 45: 412-420. doi: 10.1016/j.jiec.2016.10.010 |
[76] | MARTINEZ-HUITLE C A, FERRO S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes[J]. Chemical Society Reviews, 2006, 35(12): 1324-1340. doi: 10.1039/B517632H |
[77] | BONFATTI F, FERRO S, LAVEZZO F, et al. Electrochemical incineration of glucose as a model organic substrate. II. Role of active chlorine mediation[J]. Journal of the Electrochemical Society, 2000, 147(2): 592-596. doi: 10.1149/1.1393238 |
[78] | CHEN G H. Electrochemical technologies in wastewater treatment[J]. Separation and Purification Technology, 2004, 38(1): 11-41. doi: 10.1016/j.seppur.2003.10.006 |
[79] | KAUR R, SANGAL V K, KAUR P, et al. Demulsification of cutting oil emulsion by electro-oxidation process: Batch and continuous mode[J]. Journal of the Electrochemical Society, 2017, 164(13): E496-E504. doi: 10.1149/2.1841713jes |
[80] | DEBORDE M, GUNTEN U V. Reactions of chlorine with inorganic and organic compounds during water treatment: Kinetics and mechanisms: A critical review[J]. Water Research, 2008, 42(1/2): 13-51. |
[81] | YANG S B, JANG S H, HONG S C, et al. Treatment of COD from wasted soluble cutting fluids using Ti-IrO2 electrode[J]. Journal of Korea Society of Waste Management, 2017, 34(7): 744-750. doi: 10.9786/kswm.2017.34.7.744 |
[82] | CARVALHINHA P P, FLORES A, RODRIGUES J A, et al. AnSBBR applied to the treatment of metalworking fluid wastewater: Effect of organic and shock load[J]. Applied Biochemistry and Biotechnology, 2010, 162(6): 1708-1724. doi: 10.1007/s12010-010-8952-x |
[83] | TELI A, VYRIDES I, STUCKEY D C. Treatment of metalworking fluids using a submerged anaerobic membrane bioreactor (SAMBR)[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(3): 507-513. |
[84] | GERULOVá K, SOLDáN M. Study on the metalworking wastewater pre-treatment using Fenton’s reaction[J]. Journal of Chemical Technology and Metallurgy, 2018, 53(3): 491-495. |
[85] | JAGADEVAN S, DOBSON P, THOMPSON I P. Harmonisation of chemical and biological process in development of a hybrid technology for treatment of recalcitrant metalworking fluid[J]. Bioresource Technology, 2011, 102(19): 8783-8789. doi: 10.1016/j.biortech.2011.07.031 |
[86] | THILL P G, AGER D K, VOJNOVIC B, et al. Hybrid biological, electron beam and zero-valent nano iron treatment of recalcitrant metalworking fluids[J]. Water Research, 2016, 93: 214-221. doi: 10.1016/j.watres.2016.02.028 |
[87] | ZHANG Q, YU C J, FANG J, et al. Using the combined Fenton-MBR process to treat cutting fluid wastewater[J]. Polish Journal of Environmental Studies, 2017, 26(3): 1375-1383. doi: 10.15244/pjoes/68229 |
[88] | VYRIDES I, RIVETT D W, BRUCE K D, et al. Selection and assembly of indigenous bacteria and methanogens from spent metalworking fluids and their potential as a starting culture in a fluidized bed reactor[J]. Microbial Biotechnology, 2019, 12(6): 1302-1312. doi: 10.1111/1751-7915.13448 |
[89] | 陈益成. 某汽车制造厂切削液废水处理工程实例[J]. 广东化工, 2019, 46(11): 164-165. doi: 10.3969/j.issn.1007-1865.2019.11.070 |
[90] | 赵路霞, 张洛红, 王蔚, 等. 混凝-热活化过硫酸盐氧化处理金属切削液废水[J]. 西安工程大学学报, 2017, 31(2): 192-196. |
[91] | 黄腾蛟, 汪清环, 孙启元, 等. 混凝与芬顿工艺联用处理切削废液[J]. 环境工程学报, 2016, 10(3): 1253-1258. doi: 10.12030/j.cjee.20160340 |
[92] | JAGADEVAN S, JAYAMURTHY M, DOBSON P, et al. A novel hybrid nano zerovalent iron initiated oxidation-biological degradation approach for remediation of recalcitrant waste metalworking fluids[J]. Water Research, 2012, 46(7): 2395-2404. doi: 10.1016/j.watres.2012.02.006 |