删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

单室双阳极微生物电解池利用氢发酵废水产氢

本站小编 Free考研考试/2021-12-31

何盛东1,,
陈思2,
樊耀亭2
1.郑州航空工业管理学院土木建筑学院,郑州 450006
2.郑州大学化学与分子工程学院,郑州 450001
基金项目: 国家自然科学基金资助项目21171147,50578148
河南省高等学校重点科研项目17A560012国家自然科学基金资助项目(21171147,50578148)
河南省高等学校重点科研项目(17A560012)




Hydrogen production from hydrogen fermentation effluent in single chamber microbial electrolysis cell with double anode arrangement

HE Shengdong1,,
CHEN Si2,
FAN Yaoting2
1.School of Civil Engineering and Architecture, Zhengzhou University of Aeronautics, Zhengzhou 450006, China
2.College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

-->

摘要
HTML全文
(0)(0)
参考文献(19)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为提高微生物电解池(MEC)利用氢发酵废水产氢速率,以丁酸为底物在微生物燃料电池(MFC)中驯化富集阳极产电微生物,采用单室双阳极MEC处理玉米秸秆的氢发酵废水,通过对关键过程参数的优化,实现氢发酵废水高效产氢。结果表明,当外加电压为0.8 V时,产氢速率和玉米秸秆氢发酵废水中COD的去除率分别达到(5.31±0.13) m3·(m3·d)-1和(58±2)%。其中,乙酸、丁酸、丙酸、乙醇的去除率分别达到(95±2)%、(76.2±0.8)%、(93±3)%、(98±1)%。与单室单阳极MEC相比,单室双阳极MEC利用玉米秸秆氢发酵废水进行深度产氢的速率提高了1.22倍。此外,MEC生物阳极驯化方式对MEC利用玉米秸秆氢发酵废水产氢具有重要影响。与利用乙酸为底物驯化富集的生物阳极相比,以丁酸为底物驯化富集的生物阳极去除COD的能力和MEC产氢速率都有提高。
关键词: 微生物电解池/
产氢速率/
单室双阳极微生物电解池/
氢发酵废水

Abstract:To enhance the hydrogen production rate of microbial electrolysis cell (MEC) to treat hydrogen fermentation effluent of corn straw, single chamber MEC with double anode was developed in this study. The anodes of MEC were first acclimated in microbial fuel cells (MFCs) using butyrate as substrate before moving into MEC, the key operational parameters of MEC were optimized for high efficient hydrogen yield in batch tests. The results showed that the maximum hydrogen production rate and COD removal rate were (5.31±0.13) m3·(m3·d)-1 and of (58±2)% at 0.8 V applied voltage, respectively. Of which the removal rates of acetate, butyrate, propionate, and ethanol reached (95±2)%, (76.2±0.8)%, (93±3)%, (98±1)%, respectively. Compared with single chamber MEC with one anode,the hydrogen production rate of single chamber MEC with double anode treating hydrogen fermentation effluent of corn straw increased by 1.22 times. In addition, the results also illustrated that the acclimation mode of the MEC anode biofilm had an important effect on its hydrogen production rate with hydrogen fermentation effluent of corn straw, and the MEC anode biofilm pre-acclimated with butyrate presented higher hydrogen production rate and COD removal rate than that of pre-acclimated with acetate.
Key words:microbial electrolysis cell/
hydrogen production rate/
single chamber microbial electrolysis cell with double anode/
hydrogen fermentation wastewater.

加载中
[1] KUMAR G, MUDHOO A, SIVAGURUNTHAN P, et al. Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production[J]. Bioresource Technology, 2016, 219: 725-737.
[2] GUO X M, TRABLY T, LATRILLE E, et al. Hydrogen production from agricultural waste by dark fermentation: A review[J]. International Journal of Hydrogen Energy, 2008, 33: 7013-7019.
[3] 杏艳, 马红翠, 樊耀亭, 等. 秸秆类生物质发酵法生物产氢的研究[J]. 科学通报, 2009, 54(1): 1-7.
[4] SONG Z X, WANG Z Y, WU L Y, et al. Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation[J]. International Journal of Hydrogen Energy, 2012, 37: 6554-6561.
[5] GOMZE X, FERNANDEZ C, FIERRO J, et al. Hydrogen production: Two stage processes for waste degradation[J]. Bioresource Technology, 2011, 102: 8621-8627.
[6] MARONE A, AYALA-CAMPOS O R, TRABLY E, et al. Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework[J]. International Journal of Hydrogen Energy, 2017, 42(3): 1609-1621.
[7] LALAURETTE E, THAMMANNAGOWDA S, MOHAGHEGHI A, et al. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogesis[J]. International Journal of Hydrogen Energy, 2009, 34: 6201-6210.
[8] LU L, REN N Q, XING D F, et al. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell[J]. Biosensors and Bioelectronics, 2009, 24: 3055-3060.
[9] LIU W Z, HUANG S C, ZHOU A J, et al. Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge[J]. International Journal of Hydrogen Energy, 2012, 37: 13859-13864.
[10] WANG A J, SUN D, CAO G L, et al. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell[J]. Bioresource Technology, 2011, 102: 4137-4143.
[11] LIANG D W, PENG S K, LU S F, et al. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization[J]. Bioresource Technology, 2011, 102: 10881-10885.
[12] LI X H, LIANG D W, BAI Y X, et al. Enhanced H2 production from corn stalk by integrating dark fermentation and single-chamber microbial electrolysis cells with double anode arrangement[J]. International Journal of Hydrogen Energy, 2014, 39(17): 8977-8982.
[13] 吴婷婷, 朱葛夫, 邹然, 等. 发酵制氢废液的微生物电解池产氢[J]. 化工进展, 2013, 32(6):1435-1438.
[14] CHENG S, LIU H, LOGAN B E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure[J]. Electrochemistry Communications, 2006, 8: 489-494.
[15] LI X, ZHANG R, ZHANG Y, et al. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent[J]. Bioresource Technology, 2017, 236: 37-43.
[16] FANG Y, ZHANG G, GUO X Y, et al. Biohydrogen production from beer lees biomass by cow dung compost[J]. Biomass Bioenergy, 2006, 30: 493-496.
[17] LOGAN B E, CALL D, CHENG S, et al. Microbial electrolysis cells (MECs) for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42: 8630-8640.
[18] LIU H,LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology, 2004, 38: 4040-4046.
[19] LU L, REN N Q, ZHAO X, et al. Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells[J]. Energy & Environmental Science, 2011, 4: 1329-1336.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:853
HTML全文浏览数:788
PDF下载数:73
施引文献:0
出版历程

刊出日期:2019-06-18




-->








单室双阳极微生物电解池利用氢发酵废水产氢

何盛东1,,
陈思2,
樊耀亭2
1.郑州航空工业管理学院土木建筑学院,郑州 450006
2.郑州大学化学与分子工程学院,郑州 450001
基金项目: 国家自然科学基金资助项目21171147,50578148 河南省高等学校重点科研项目17A560012国家自然科学基金资助项目(21171147,50578148) 河南省高等学校重点科研项目(17A560012)
关键词: 微生物电解池/
产氢速率/
单室双阳极微生物电解池/
氢发酵废水
摘要:为提高微生物电解池(MEC)利用氢发酵废水产氢速率,以丁酸为底物在微生物燃料电池(MFC)中驯化富集阳极产电微生物,采用单室双阳极MEC处理玉米秸秆的氢发酵废水,通过对关键过程参数的优化,实现氢发酵废水高效产氢。结果表明,当外加电压为0.8 V时,产氢速率和玉米秸秆氢发酵废水中COD的去除率分别达到(5.31±0.13) m3·(m3·d)-1和(58±2)%。其中,乙酸、丁酸、丙酸、乙醇的去除率分别达到(95±2)%、(76.2±0.8)%、(93±3)%、(98±1)%。与单室单阳极MEC相比,单室双阳极MEC利用玉米秸秆氢发酵废水进行深度产氢的速率提高了1.22倍。此外,MEC生物阳极驯化方式对MEC利用玉米秸秆氢发酵废水产氢具有重要影响。与利用乙酸为底物驯化富集的生物阳极相比,以丁酸为底物驯化富集的生物阳极去除COD的能力和MEC产氢速率都有提高。

English Abstract






--> --> --> 参考文献 (19)
相关话题/微生物 生物 郑州航空工业管理学院 电压 土木