王悦2,
周蕾2,
范晓琳2,
肖寒2,
杨磊2,
胥建卫1,,,
张照斌2,,
1. 西北农林科技大学理学院, 杨凌 712100;
2. 北京大学城市与环境学院, 北京 100871
作者简介: 吕钧惠(1988-),女,硕士,研究方向为生物物理学,E-mail:15829012547@163.com.
通讯作者: 胥建卫,xxujianwei@nwafu.edu.cn ; 张照斌,zhangzb@pku.edu.cn
基金项目: 国家重点研发计划资助项目(2017YFF0211202);政府间国际科技创新合作重点专项(2016YFE0117800);国家自然科学基金资助项目(21777003)中图分类号: X171.5
Transcriptome Analysis of Oryzias sinensis Primary Hepatocytes under the Exposure of Estradiol
Lv Junhui1,2,Wang Yue2,
Zhou Lei2,
Fan Xiaolin2,
Xiao Han2,
Yang Lei2,
Xu Jianwei1,,,
Zhang Zhaobin2,,
1. College of Science, Northwest A&F University, Yangling 712100, China;
2. College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Corresponding authors: Xu Jianwei,xxujianwei@nwafu.edu.cn ; Zhang Zhaobin,zhangzb@pku.edu.cn
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:鱼类雌激素响应基因的发掘及其作为生物标记物基因的应用一直是生态毒理学的研究热点。近年来的相关研究普遍采用活体实验,易受到动物个体差异影响,存在一定不确定性。通过建立鱼类原代肝细胞培养方法,利用实验室多代繁育的中国青鳉(Oryzias sinensis)作为实验动物,基于新一代测序技术(NGS),开展了不同浓度雌二醇(0.01、0.1、1、10和100 nmol·L-1)暴露下的中国青鳉肝细胞转录组分析,获得并注释中国青鳉表达序列标签(ESTs)65 765条,发现雌激素暴露后具有良好剂量效应关系的显著差异表达基因(DEG)105个(37个上调,68个下调),其中有9个未知基因。GO和KEGG Pathway分析发现,DEG显著富集于雌激素的细胞响应、脂质运输、骨骼肌组织发育、钙离子运输、蛋白磷酸化等生物学过程以及钙离子信号通路和MAPK信号通路等。通过RT-qPCR对部分雌激素响应基因进行了分析验证,结果表明NGS数据可靠。卵黄原蛋白(VTG)和卵壳前体蛋白(CHG)基因家族在0.1 nmol·L-1雌二醇浓度时均能够显著升高,vtg2响应最明显。该研究提供了一个可靠的中国青鳉肝脏雌激素响应基因列表,以及一种利用本土物种细胞离体实验开展化学物质雌激素活性测定的方法,该方法比一些常用环境雌激素生物测试方法灵敏度更高。
关键词: 雌二醇(E2)/
中国青鳉/
原代肝细胞/
转录组分析/
RT-qPCR
Abstract:The identification of estrogen-responsive genes in fishes and their uses as biomarkers in monitoring environmental estrogens in the water are of concern in ecotoxicological studies. Recently, many estrogen-responsive genes have been investigated in model fishes such as zebrafish using in vivo exposure experiments. Because of the individual difference, there are always non-negligible errors and uncertainties during the in vivo studies. In this paper, we developed a method for fish primary hepatocyte culture, and studied the gene expressions in response to estradiol exposure at different concentrations (0.01, 0.1, 1, 10 and 100 nmol·L-1) in primary hepatocytes of Chinese medaka (Oryzias sinensis) using next-generation sequencing technology (NGS). A total of 65 765 expression sequence tags (ESTs) were obtained and annotated by NGS, and 105 differentially expressed genes (DEGs) (37 up-regulated, 68 down-regulated, 9 unknown genes) were detected and show good dose-response relationship after estradiol exposure. GO and KEGG Pathway analyses showed that the DEGs were significantly enriched in the biological process of "response to estradiol", "lipid transport", "skeletal muscle tissue development", "calcium ion transport", "protein phosphorylation", etc., and KEGG pathways of "ubiquitin mediated proteolysis", "MAPK signaling pathway", etc. Analyses of some DEGs by RT-qPCR confirmed the expression results of NGS. The expressions of vitellogenin (VTG) genes and choriogenin (CHG) genes were found to be significantly increased at concentration of 0.1 nmol·L-1 estradiol and higher, and the expression of vtg2 was the largest increased. This study provides a reliable list of estrogen-responsive genes in liver of Chinese medaka and a method for measuring the estrogenic activity of chemicals in vitro using native species. The method is more sensitive than some traditional bioassays.
Key words:estradiol (E2)/
Oryzias sinensis/
primary hepatocytes/
transcriptome analysis/
RT-qPCR.
Guillette L J, Gross T S, Masson G R,et al. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida[J]. Environmental Health Perspectives, 1994, 102(8):680-688 |
Jobling S, Sumpter J P, Sheahan D A, et al. Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals[J]. Environmental Toxicology and Chemistry, 1996, 15(2):194-202 |
Kang I J, Yokota H, Oshima Y, et al. Effect of 17 beta-estradiol on the reproduction of Japanese medaka (Oryzias latipes)[J]. Chemosphere, 2002, 47(1):71-80 |
Matthiessen P, Wheeler J R, Weltje L. A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations[J]. Critical Reviews in Toxicology, 2018, 48(3):195-216 |
Blazer V S, Iwanowicz L R, Iwanowicz D D, et al. Intersex (testicular oocytes) in smallmouth bass from the Potomac River and selected nearby drainages[J]. Journal of Aquatic Animal Health, 2007, 19(4):242-253 |
Fuzzen M L, Bennett C J, Tetreault G, et al. Severe intersex is predictive of poor fertilization success in populations of rainbow darter (Etheostoma caeruleum)[J]. Aquatic Toxicology, 2015, 160:106-116 |
Kidd K A, Blanchfield P J, Mills K H, et al. Collapse of a fish population after exposure to a synthetic estrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21):8897-8901 |
宋凯, 骆源, 张春晓, 等. 皮质醇对斜带石斑鱼原代培养肝细胞糖代谢的影响[J]. 动物营养学报, 2016, 28(11):3520-3527Song K, Luo Y, Zhang C X, et al. Effects of cortisol on glycometabolism in primary cultured hepatocytes form Epinephelus coioides[J]. Chinese Journal of Animal Nutrition, 2016, 28(11):3520-3527(in Chinese) |
马陶武, 王子健, 易浪波. 稀有鮈鲫和日本青鳉肝细胞原代培养及其对2,3,7,8-TCDD的敏感性比较[J]. 环境科学学报, 2010, 30(6):1243-1249Ma T W, Wang Z J, Yi L B. Primary culture of hepatocytes from rare minnow (Gobiocypris rarus) and Japanese medaka (Oryzias latipes) and comparison of their sensitivity to 2,3,7,8-TCDD[J]. Acta Scientiae Circumstantiae, 2010, 30(6):1243-1249(in Chinese) |
Kausch U, Alberti M, Haindl S, et al. Biomarkers for exposure to estrogenic compounds:Gene expression analysis in zebrafish (Danio rerio)[J]. Environmental Toxicology, 2008, 23:15-24 |
Sipes N S, Padilla S, Knudsen T B. Zebrafish:As an integrative model for twenty-first century toxicity testing[J]. Birth Defects Research Part C-Embryo Today:Reviews, 2011, 93(3):256-267 |
李洁斐, 李卫华, 金泰廙, 等. 斑马鱼及其在环境毒理学中的应用[J]. 环境与职业医学, 2005, 22(5):78-81Li J F, Li W H, Jin T Y, et al. Zebrafish and its application in environment toxicology[J]. Journal of Environmental and Occupational Medicine, 2005, 22(5):78-81(in Chinese) |
Tabata A, Miyamoto N, Ohnishi Y, et al. The effect of chlorination of estrogenic chemicals on the level of serum vitellogenin of Japanese medaka (Oryzias latipes)[J]. Water Science and Technology, 2003, 47(9):51-57 |
曹文宣, 王剑伟. 稀有鮈鲫——一种新的鱼类试验动物[J]. 实验动物科学与管理, 2003, 20(z1):96-99Cao W X, Wang J W. Rare minnow:A new laboratory animal in China[J]. Laboratory Animal Science and Management, 2003, 20(z1):96-99(in Chinese) |
王剑伟, 曹文宣. 中国本土鱼类模式生物稀有鮈鲫研究应用的历史与现状[J]. 生态毒理学报, 2017, 12(2):20-33Wang J W, Cao W X. Gobiocypris rarus as a Chinese native model organism:History and current situation[J]. Asian Journal of Ecotoxicology, 2017, 12(2):20-33(in Chinese) |
马陶武, 王子健, 陈剑锋, 等. 乙炔基雌二醇对稀有鮈鲫肾脏的毒性效应[J]. 环境科学学报, 2004, 24(3):487-491Ma T W, Wang Z J, Chen J F, et al. Toxic effects of 17-α-ethinylestradiol to the kidney of rare minnow (Gobiocypris rarus)[J]. Acta Scientiae Circumstantiae, 2004, 24(3):487-491(in Chinese) |
肖安, 张博. 斑马鱼核心数据库简介[J]. 遗传, 2013, 35(4):545-546 |
贾睿, 曹丽萍, 丁炜东, 等. 鱼类肝细胞分离、原代培养与应用研究综述[J]. 江西农业大学学报, 2012, 34(1):147-157Jia R, Cao L P, Ding W D, et al. Isolation, primary culture and application of fish hepatocytes:An overview[J]. Acta Agriculturae Universitatis Jiangxiensis, 2012, 34(1):147-157(in Chinese) |
Wolf K, Quimby M C. Established eurythermic line of fish cells in vitro[J]. Science, 1962, 135(3508):1065-1066 |
Pesonen M, Andersson T B. Fish primary hepatocyte culture; an important model for xenobiotic metabolism and toxicity studies[J]. Aquatic Toxicology, 1997, 37(2/3):253-267 |
Yin G, Cao L, Xu P, et al. Hepatoprotective and antioxidant effects of glycyrrhiza glabra extract against carbon tetrachloride (CCl4)-induced hepatocyte damage in common carp (Cyprinus carpio)[J]. Fish Physiology and Biochemistry, 2011, 37:209-216 |
Wolf K, Ahne W. Fish cell culture[J]. Cell Culture, 1982, 2:305-328 |
Bols N C, Lee L E J. Technology and uses of cell cultures from the tissues and organs of bony fish[J]. Cytotechnology, 1991, 6(3):163-187 |
Lam S H, Lee S G, Lin C Y, et al. Molecular conservation of estrogen-response associated with cell cycle regulation, formonal carcinogenesis and cancer in zebrafish and human cancer cell lines[J]. BMC Medical Genomics, 2011, 4(1):41 |
Levi L, Pekarski I, Gutman E, et al. Revealing genes associated with vitellogenesis in the liver of the zebrafish (Danio rerio) by transcriptome profiling[J]. BMC Medical Genomics, 2009, 10:141 |
Hao R, Bondesson M, Singh A V, et al. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis[J]. The Public Library of Science One, 2013, 8(11):e79020 |
Jin B, Wang W J, Bai W P, et al. The effects of estradiol valerate and remifemin on liver lipid metabolism[J]. Acta Histochemica, 2017, 119(6):610-619 |
Lannigan D A. Estrogen receptor phosphorylation[J]. Steroids, 2003, 68(1):1-9 |
Roan C J, Huang C C, Cheng H H, et al. Diethylstilbestrol-induced estrogen receptor-dependent Ca2+ rises and apoptosis in Chinese hamster ovary (CHO) cells[J]. Journal of Receptor and Signal Transduction Research, 2008, 28(3):307-322 |
Wang Q, Ye Q, Lu R, et al. Effects of estradiol on high-voltage-activated Ca2+ channels in cultured rat cortical neurons[J]. Endocrine Research, 2014, 39(2):44-49 |
Min J, Lee S, Gu M B. Effects of endocrine disrupting chemicals on distinct expression patterns of estrogen receptor, cytochrome P450 aromatase and P53 genes in Oryzias latipes liver[J]. Journal of Biochemical and Molecular Toxicology, 2003, 17(5):272-277 |
罗平. 高效液相色谱法测定地表水中5种雌激素残留[J]. 化学分析计量, 2017, 26(5):78-81Luo P. Determination of the residues of five kinds of estrin in surface water[J]. Chemical Analysis and Meterage, 2017, 26(5):78-81(in Chinese) |
Kovalchuk S N, Kozhemyako V B, Atopkina L N, et al. Estrogenic activity of triterpene glycosides in yeast two-hybrid assay[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2006, 101(4-5):226-231 |
Tyler C R, Aerle R V, Hutchinson T H, et al. An in vivo testing system for endocrine disruptors in fish early life stages using induction of vitellogenin[J]. Environmental Toxicology and Chemistry, 1999, 18(2):337-347 |