删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

17β-雌二醇(E2)对大型溞(Daphnia magna)生殖、发育和相关基因转录的影响

本站小编 Free考研考试/2021-12-30

李晓东,
袁思亮,
李俊,
刘春生,
华中农业大学水产学院, 武汉 430070
作者简介: 李晓东(1994-),男,硕士研究生,研究方向为水生态毒理学,E-mail:18561637825@163.com.
通讯作者: 刘春生,cliu@mail.hzau.edu.cn
基金项目: 国家重点研发计划资助项目(2017YFF0211203)


中图分类号: X171.5


Effects of 17β-Estradiol (E2) on Reproduction, Development and Transcription of Related Genes in Daphnia magna

Li Xiaodong,
Yuan Siliang,
Li Jun,
Liu Chunsheng,
College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
Corresponding author: Liu Chunsheng,cliu@mail.hzau.edu.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(44)
相关文章
施引文献
资源附件(0)
访问统计

摘要:17β-雌二醇(17β-estradiol,E2)是一种环境内分泌干扰物质,相关研究表明,E2对脊椎动物的生长和发育能够产生不良影响,但是E2对无脊椎动物,如大型溞(Daphnia magna)的毒性研究较少,其具体的毒性效应和致毒机制有待阐明。以E2为研究对象,以大型溞(<24 h)为实验动物,按照经济合作与发展组织(Economic Co-operation and Development,OECD)规定的标准试验程序开展为期21 d的标准暴露实验,评估不同浓度E2暴露对大型溞发育、生殖以及相关基因转录的影响。研究发现,1 360 μg·L-1 E2暴露对大型溞产生了显著的致死效应,降低了大型溞蜕皮个数,增加了大型溞的产溞量,而其他低浓度的E2(1.36、13.6和136 μg·L-1)暴露没有对大型溞产生显著的毒性效应。荧光定量PCR结果显示,1 360 μg·L-1 E2暴露显著下调了大型溞蜕皮激素代谢相关基因细胞色素P450基因18a1(cytochrome P450 18a1,cyp18a1)和蜕皮激素受体基因(hormone receptor 3,hr3)的转录,说明E2可能是通过抑制大型溞的蜕皮进而引起了发育和生殖毒性。
关键词: 雌二醇/
大型溞/
生殖毒性/
发育毒性

Abstract:As an environmental endocrine disruptor, relevant studies have demonstrated that, 17β-estradiol (E2) has adverse effects on the growth and development of vertebrates, but the effects on invertebrates, such as Daphnia magna, have been rarely studied, and the specific toxic effect and mechanism need to be clarified. In this study, Daphnia magna (<24 h) was used as an experimental animal to conduct a 21-day standard exposure experiment in accordance with Organization for Economic Co-operation and Development (OECD) regulations to evaluate the effects of E2 on the growth, reproduction and gene transcription. The results demonstrated that, 1 360 μg·L-1 E2 exposure caused significant lethal effect, and significantly reduced the number of molting as well as increased the amount of offspring, while treatment with other lower exposure concentrations (1.36, 13.6 and 136 μg·L-1) did not cause obvious effects. In addition, fluorescence quantitative PCR results showed that the transcriptions of cytochrome P450 18a1 (cyp18a1) and hormone receptor 3 (hr3) were significantly inhibited in 1 360 μg·L-1 exposure group, which proved that E2 might cause developmental and reproductive toxicity by inhibiting the molting of Daphnia magna.
Key words:E2/
Daphnia magna/
reproductive toxicity/
developmental toxicity.

加载中
李国超. 17β-雌二醇对斑马鱼的毒性研究[D]. 北京:中国农业科学院, 2015:1-2 Li G C. Toxicity of 17-beta-estradiol for zebrafish[D]. Beijing:Chinese Academy of Agricultural Sciences, 2015:1-2(in Chinese)
Sharpe R M. Hormones and testis development and the possible adverse effects of environmental chemicals[J]. Toxicology Letters, 2001, 120(1-3):221-232
Shore L S, Shemesh M. Naturally produced steroid hormones and their release into the environment[J]. Pure and Applied Chemistry, 2003, 75(11-12):1859-1871
Andersen H, Siegrist H, Halling-Sørensen B, et al. Fate of estrogens in a municipal sewage treatment plant[J]. Environmental Science & Technology, 2003, 37(18):4021-4026
Ternes T A, Stumpf M, Mueller J, et al. Behavior and occurrence of estrogens in municipal sewage treatment plants-I. Investigations in Germany, Canada and Brazil[J]. Science of the Total Environment, 1999, 225(1-2):81-90
Shore L S, Gurevitz M, Shemesh M. Estrogen as an environmental pollutant[J]. Bulletin of Environmental Contamination and Toxicology, 1993, 51(3):361-366
Zhou Y, Zha J, Wang Z. Occurrence and fate of steroid estrogens in the largest wastewater treatment plant in Beijing, China[J]. Environmental Monitoring and Assessment, 2012, 184(11):6799-6813
Zhou Y, Zha J, Xu Y, et al. Occurrences of six steroid estrogens from different effluents in Beijing, China[J]. Environmental Monitoring and Assessment, 2012, 184(3):1719-1729
Tabata A, Kashiwada S, Ohnishi Y, et al. Estrogenic influences of estradiol-17beta, p-nonylphenol and bis-phenol-A on Japanese medaka (Oryzias latipes) at detected environmental concentrations[J]. Water Science and Technology, 2001, 43(2):109-116
Belfroid A C, Van der Horst A, Vethaak A D, et al. Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands[J]. Science of the Total Environment, 1999, 225(1-2):101-108
Lei B, Huang S, Zhou Y, et al. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China[J]. Chemosphere, 2009, 76(1):36-42
Gong J, Ran Y, Chen D, et al. Occurrence and environmental risk of endocrine-disrupting chemicals in surface waters of the Pearl River, South China[J]. Environmental Monitoring and Assessment, 2009, 156(1-4):199-210
Gárriz Á, Pamela S, Miranda L A. Exposure to E2 and EE2 environmental concentrations affect different components of the Brain-Pituitary-Gonadal axis in pejerrey fish (Odontesthes bonariensis)[J]. Ecotoxicology and Environmental Safety, 2017, 144:45-53
Pickford D B, Morris I D. Effects of endocrine-disrupting contaminants on amphibian oogenesis:Methoxychlor inhibits progesterone-induced maturation of Xenopus laevis oocytes in vitro[J]. Environmental Health Perspectives, 1999, 107(4):285-292
李国超, 余凯敏, 冯为民, 等. 17β-雌二醇对斑马鱼性别分化的影响[J]. 生物技术通报, 2015, 31(6):200-208Li G C, Yu K M, Feng W M, et al. Effects of 17β-estradiol on the sex difference of zebrafish (Danio rerio)[J]. Biotechnology Bulletin, 2015, 31(6):200-208(in Chinese)
侯彦峰, 张照斌, 胡建英, 等. 定量RT-PCR检测雌二醇诱导的青鳉鱼基因表达[J]. 中国环境科学, 2006(5):599-602 Hou Y F, Zhang Z B, Hu J Y, et al. Gene expression in liver of male medaka (Oryzias latipes) induced by estradiol of low concentration examined, survived with real-time quantitative RT-PCR[J]. China Environmental Science, 2006(5):599-602(in Chinese)
Tompsett A R, Wiseman S, Higley E, et al. Effects of exposure to 17α-ethynylestradiol during larval development on growth, sexual differentiation, and abundances of transcripts in the liver of the wood frog (Lithobates sylvaticus)[J]. Aquatic Toxicology, 2013, 126:42-51
徐伟, 楼钦钦, 魏无际, 等. 雌二醇短期暴露对非洲爪蟾性腺和输卵管形态及性二态基因表达影响的初步研究[J]. 生态毒理学报, 2015, 10(1):263-270Xu W, Lou Q Q, Wei W J, et al. Initial evaluation on gonadal and oviductive morphology and sexually dimorphic gene expression of Xenopus laveis after short-term exposure to 17beta-estrodiol[J]. Asian Journal of Ecotoxicology, 2015, 10(1):263-270(in Chinese)
Caspers N. No estrogenic effects of bisphenol A in Daphnia magna Straus[J]. Bulletin of Environmental Contamination and Toxicology, 1998, 61(2):143-148
Agatz A, Brown C D. Evidence for links between feeding inhibition, population characteristics, and sensitivity to acute toxicity for Daphnia magna[J]. Environmental Science & Technology, 2013, 47(16):9461-9469
Agatz A, Cole T A, Preuss T G, et al. Feeding inhibition explains effects of imidacloprid on the growth, maturation, reproduction, and survival of Daphnia magna[J]. Environmental Science & Technology, 2013, 47(6):2909-2917
Heckmann L H, Sibly R M, Connon R, et al. Systems biology meets stress ecology:Linking molecular and organismal stress responses in Daphnia magna[J]. Genome Biology, 2008, 9(2):R40
LeBlanc G A. Crustacean endocrine toxicology:A review[J]. Ecotoxicology, 2007, 16(1):61-81
Brennan S J, Brougham C A, Roche J J, et al. Multi-generational effects of four selected environmental oestrogens on Daphnia magna[J]. Chemosphere, 2006, 64(1):49-55
李根. 环境激素三氯卡班与雌二醇对大型溞的复合干扰效应[D]. 广州:暨南大学, 2014:32-36 Li G. The joint effects of triclocarban and estradiol on Daphnia magna[D]. Guangzhou:Jinan University, 2014:32-36(in Chinese)
Torres N H, Aguiar M M, Ferreira L F R, et al. Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna[J]. Environmental Monitoring and Assessment, 2015, 187(6):379
Organization for Economic Co-operation and Development (OECD). Test Guideline No. 211. Test guidelines for testing of chemicals:Daphnia magna reproduction test[S]. Paris:OECD, 1998
Heckmann L H, Connon R, Hutchinson T H, et al. Expression of target and reference genes in Daphnia magna exposed to ibuprofen[J]. BMC Genomics, 2006, 7(1):175
Jo M, Lee S, Yoon S, et al. Developmental and reproductive effects of tamoxifen on Daphnia magna[J]. Environmental Monitoring and Assessment, 2018, 190(11):677
Giraudo M, Douville M, Cottin G, et al. Transcriptomic, cellular and life-history responses of Daphnia magna chronically exposed to benzotriazoles:Endocrine-disrupting potential and molting effects[J]. PLoS One, 2017, 12(2):e0171763
Blewett T A, Delompré P L M, He Y, et al. Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water flea Daphnia magna[J]. Environmental Science & Technology, 2017, 51(5):3032-3039
Kato Y, Kobayashi K, Oda S, et al. Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea Daphnia magna[J]. Journal of Endocrinology, 2007, 193(1):183-194
Hannas B R, Wang Y H, Thomson S, et al. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna)[J]. Aquatic Toxicology, 2011, 101(2):351-357
Massarin S, Alonzo F, Garcia-Sanchez L, et al. Effects of chronic uranium exposure on life history and physiology of Daphnia magna over three successive generations[J]. Aquatic Toxicology, 2010, 99(3):309-319
Martin-Creuzburg D, Westerlund S A, Hoffmann K H. Ecdysteroid levels in Daphnia magna during a molt cycle:determination by radioimmunoassay (RIA) and liquid chromatography-mass spectrometry (LC-MS)[J]. General and Comparative Endocrinology, 2007, 151(1):66-71
Sumiya E, Ogino Y, Miyakawa H, et al. Roles of ecdysteroids for progression of reproductive cycle in the fresh water crustacean Daphnia magna[J]. Frontiers in Zoology, 2014, 11(1):60
Song Y, Villeneuve D L, Toyota K, et al. Ecdysone receptor agonism leading to lethal molting disruption in arthropods:Review and adverse outcome pathway development[J]. Environmental Science & Technology, 2017, 51(8):4142-4157
Cruz J, Martín D, Bellés X. Redundant ecdysis regulatory functions of three nuclear receptor HR3 isoforms in the direct-developing insect Blattella germanica[J]. Mechanisms of Development, 2007, 124(3):180-189
Mané-Padrós D, Borràs-Castells F, Belles X, et al. Nuclear receptor HR4 plays an essential role in the ecdysteroid-triggered gene cascade in the development of the hemimetabolous insect Blattella germanica[J]. Molecular and Cellular Endocrinology, 2012, 348(1):322-330
Zou E, Fingerman M. Effects of estrogenic xenobiotics on molting of the water flea, Daphnia magna[J]. Ecotoxicology and Environmental Safety, 1997, 38(3):281-285
Mu X, Leblanc G A. Cross communication between signaling pathways:Juvenoid hormones modulate ecdysteroid activity in a crustacean[J]. Journal of Experimental Zoology, 2004, 301(10):793-801
Mu X, LeBlanc G A. Developmental toxicity of testosterone in the crustacean Daphnia magna involves anti-ecdysteroidal activity[J]. General and Comparative Endocrinology, 2002, 129(2):127-133
Mu X, LeBlanc G A. Environmental antiecdysteroids alter embryo development in the crustacean Daphnia magna[J]. Journal of Experimental Zoology, 2002, 292(3):287-292
Mu X, Leblanc G A. Synergistic interaction of endocrine-disrupting chemicals:Model development using an ecdysone receptor antagonist and a hormone synthesis inhibitor[J]. Environmental Toxicology and Chemistry, 2004, 23(4):1085-1091

相关话题/基因 环境 干扰 暨南大学 北京