1宁波大学心理学系暨研究所, 宁波大学群体行为与社会心理服务研究中心, 浙江 宁波 315211;
2华东师范大学心理与认知科学学院, 上海 200062
收稿日期:
2020-08-29出版日期:
2022-01-25发布日期:
2021-11-26通讯作者:
尹军, E-mail: yinjun1@nbu.edu.cn; 段继鹏, E-mail: jipengduan@outlook.com基金资助:
* 国家自然科学基金面上项目(31871091)、宁波大学研究生科研创新基金(IF2020042)资助The recognition of social intentions based on the information of minimizing costs: EEG and behavioral evidences
LIN Jing1, HUANGLIANG Jiecheng1, HE Yunfeng1, DUAN Jipeng2, YIN Jun11Department of Psychology, Ningbo University, Ningbo 315211, China;
2School of Psychology and Cognitive Science, East China Normal University, Shanghai 200000, China
Received:
2020-08-29Online:
2022-01-25Published:
2021-11-26摘要/Abstract
摘要: 与已有研究着重考察如何识别客体导向性意图(动作以物理对象为目标, 而不涉及其他人)不同, 本研究对人们如何识别社会性意图(动作以指向社会主体为目标以影响对方的交互行为)进行了探讨。基于两交互主体在整体层面应遵循效用最大化的分析, 提出当A协助B达成目标状态所需要的成本小于B单独实现该目标状态所需要的成本时(简称为成本最小化信息), 其可被识别为具有社会性意图。通过在B面前设置栅栏的方法操纵成本最小化信息, 以指示不同意图类型的脑电μ抑制程度、对不同变化的敏感性(辨别力)为指标, 对该假设进行了检验。结果显示, 相比客体导向性意图的控制条件(即A将目标物苹果放置在石头前), 当A将目标物苹果放置在被栅栏挡住的B前, 其动作可减少B单独获取该苹果的动作成本, 即符合成本最小化条件时, μ的抑制程度更高(实验1), 且对结构改变(某两个动画中充当相同角色的智能体互换)的辨别力更强, 但对角色交换(某个动画中两个智能体的角色交换)的辨别力更弱(实验3a);; 而当栅栏不存在时, 虽然A的运动路径与实验1相同, 但A将苹果放置在B前的成本大于B自身获取苹果的成本, 即不符合成本最小化条件, 条件间μ抑制的差异消失(实验2), 且对不同动作模式中变化的辨别相当(实验3b)。鉴于已有研究表明社会性意图所诱发的μ抑制强于客体导向性意图, 且人们对存在社会性意图的两个智能体间的结构改变更容易辨别, 而对角色交换不敏感, 故上述结果揭示, 两个个体的行为是否满足成本最小化影响人们对动作意图的识别, 支持成本最小化信息是社会性意图识别线索的观点。
参考文献
[1] Auvray M., Lenay C., & Stewart J. (2009). Perceptual interactions in a minimalist virtual environment. [2] Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. [3] Brainard, D. H. (1997). The psychophysics toolbox.Spatial Vision, 10(4), 433-436. [4] Buon M., Jacob P., Loissel E., & Dupoux E. (2013). A non- mentalistic cause-based heuristic in human social evaluations. [5] Canessa N., Alemanno F., Riva F., Zani A., Proverbio A. M., Mannara N., … Cappa S. (2012). The neural bases of social intention understanding: The role of interaction goals. [6] Centelles L., Assaiante C., Nazarian B., Anton J. L., & Schmitz C. (2011). Recruitment of both the mirror and the mentalizing networks when observing social interactions depicted by point-lights: A neuroimaging study. [7] Csibra G., Bíró S., Koós O., & Gergely G. (2003). One- year-old infants use teleological representations of actions productively. [8] Cuevas K., Cannon E. N., Yoo K., & Fox N. A. (2014). The infant EEG mu rhythm: Methodological considerations and best practices. [9] de Jaegher H., Di Paolo E., & Gallagher S. (2010). Can social interaction constitute social cognition? [10] Ding X. W., Gao Z. F., & Shen M. W. (2017). Two equals one: Two human actions during social interaction are grouped as one unit in working memory. [11] Duan J. P., Yang Z. X., He X. Y., Shao M. X., & Yin J. (2018). Automatic attribution of social coordination information to chasing scenes: Evidence from mu suppression. [12] Fox N. A., Bakermans-Kranenburg M. J., Yoo K. H., Bowman L. C., Cannon E. N., Vanderwert R. E., … van IJzendoorn, M. H. (2016). Assessing human mirror activity with EEG mu rhythm: A meta-analysis. [13] Gergely, G., & Csibra, G. (2003). Teleological reasoning in infancy: The naïve theory of rational action. [14] Gergely G.,& Jacob, P. (2012). Reasoning about instrumental and communicative agency in human infancy. In F. Xu & T. Kushnir (Eds.), Advances in child development and behavior: Rational constructivism in cognitive development (Vol. 43, pp. 59-94). Waltham, MA: Academic Press. [15] Heider, F., & Simmel, M. (1944). An experimental study of apparent behavior. [16] Heineman-Pieper, J. (2009). [17] Hobbs, K., & Spelke, E. (2015). Goal attributions and instrumental helping at 14 and 24 months of age. [18] Jara-Ettinger J., Gweon H., Tenenbaum J. B., & Schulz L. E. (2015). Children’s understanding of the costs and rewards underlying rational action. [19] Klimesch W., Sauseng P., Hanslmayr S., Gruber W., & Freunberger R. (2007). Event-related phase reorganization may explain evoked neural dynamics. [20] Kourtis D., Woźniak M., Sebanz N., & Knoblich G. (2019). Evidence for we-representations during joint action planning. [21] Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. [22] Miller, S. (2001). Social action: A teleological account. Cambridge: Cambridge University Press. [23] Muthukumaraswamy S. D., Johnson B. W., & McNair N. A. (2004). Mu rhythm modulation during observation of an object-directed grasp. [24] Oberman L. M., Hubbard E. M., McCleery J. P., Altschuler E. L., Ramachandran V. S., & Pineda J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. [25] Oberman L. M., Pineda J. A., & Ramachandran V. S. (2007). The human mirror neuron system: A link between action observation and social skills. [26] Papeo, L. (2020). Twos in human visual perception. [27] Perry A., Stein L., & Bentin S. (2011). Motor and attentional mechanisms involved in social interaction—evidence from mu and alpha EEG suppression. [28] Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event- related EEG/MEG synchronization and desynchronization: Basic principles. [29] Pineda, J. O. A., & Oberman, L. M. (2006). What goads cigarette smokers to smoke? Neural adaptation and the mirror neuron system. [30] Pomiechowska, B., & Csibra, G. (2017). Motor activation during action perception depends on action interpretation. [31] Sedikides C., Olsen N., & Reis H. T. (1993). Relationships as natural categories. [32] Sherman S. J., Castelli L., & Hamilton D. L. (2002). The spontaneous use of a group typology as an organizing principle in memory. [33] Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. [34] Stahl, A. E., & Feigenson, L. (2014). Social knowledge facilitates chunking in infancy. [35] Suzuki, S., & Cavanagh, P. (1995). Facial organization blocks access to low-level features: An object inferiority effect. [36] Tatone D., Geraci A., & Csibra G. (2015). Giving and taking: Representational building blocks of active resource-transfer events in human infants. [37] Török G., Pomiechowska B., Csibra G., & Sebanz N. (2019). Rationality in joint action: Maximizing coefficiency in coordination. [38] Ullman T. D., Baker C. L., Macindoe O., Evans O., Goodman N. D., & Tenenbaum J. B. (2009). Help or hinder: Bayesian models of social goal inference. [39] Ulloa, E. R., & Pineda, J. A. (2007). Recognition of point-light biological motion: Mu rhythms and mirror neuron activity. [40] Vestner T., Tipper S. P., Hartley T., Over H., & Rueschemeyer S. A. (2019). Bound together: Social binding leads to faster processing, spatial distortion, and enhanced memory of interacting partners. [41] Yin J., Ding X. W., Xu H. K., Zhang F., & Shen M. (2017). Social coordination information in dynamic chase modulates EEG Mu rhythm. [42] Yin J., Ding X. W., Zhou J. F., Shui R., Li X. Y., & Shen M. W. (2013). Social grouping: Perceptual grouping of objects by cooperative but not competitive relationships in dynamic chase. [43] Yin J., Tatone D., & Csibra G. (2020). Giving, but not taking, actions are spontaneously represented as social interactions: Evidence from modulation of lower alpha oscillations. [44] Yin J., Xu H. K., Duan J. P., & Shen M. W. (2018). Object- based attention on social units: Visual selection of hands performing a social interaction. |
相关文章 2
[1] | 杨亦松, 林静, 何晓燕, 尹军. 动作理解因境而异: 动作加工中情境信息的自动整合[J]. 心理学报, 2020, 52(6): 682-693. |
[2] | 赵怀阳, 江俊, 周临舒, 蒋存梅. 人类镜像系统参与音乐情绪的自动加工:来自EEG的证据[J]. 心理学报, 2019, 51(7): 795-804. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=5127