![](http://journal.psych.ac.cn/xlxb/images/email.png)
![](http://journal.psych.ac.cn/xlxb/images/email.png)
1山东师范大学心理学院, 济南 250358
2中国石油大学(华东)党委学生工作处, 山东 青岛 266580
3中山大学心理学系, 广州 510006
收稿日期:
2020-10-15出版日期:
2021-11-25发布日期:
2021-09-23通讯作者:
丁晓伟,李寿欣E-mail:dingxw3@mail.sysu.edu.cn;shouxinli@sdnu.edu.cn基金资助:
国家自然科学基金青年项目(31800911);国家自然基金面上项目(31871100);教育部人文社会科学研究一般项目(19YJC190004);高校基本科研业务费中山大学青年教师重点培育项目(19wkzd23);广东省自然科学基金(2021A1515011103)Same-category advantage on the capacity of visual working memory
SUN Yanliang1, SONG Jiaru1, XIN Xiaowen2, DING Xiaowei3(![](http://journal.psych.ac.cn/xlxb/images/email.png)
![](http://journal.psych.ac.cn/xlxb/images/email.png)
1School of Psychology, Shandong Normal University, Jinan 250358, China
2Department of Party Committee Student Affairs, China University of Petroleum, Qingdao 266580, China
3Department of Psychology, Sun Yat-Sen University, Guangzhou 510006, China
Received:
2020-10-15Online:
2021-11-25Published:
2021-09-23Contact:
DING Xiaowei,LI Shouxin E-mail:dingxw3@mail.sysu.edu.cn;shouxinli@sdnu.edu.cn摘要/Abstract
摘要: 概念规律如记忆项间的类别关系如何影响视觉工作记忆容量是一个有争议的问题。针对该问题, 学界存在两种预测截然不同的假说:(1)混合类别优势假说, (2)同类别优势假说。综述文献发现, 该类研究均采用带有细节特征的真实客体作为实验材料, 因此前人研究中发现的混合类别优势效应或同类别优势效应中必然混有低水平知觉特征的影响。故本研究采用去除细节信息的动物剪影作为记忆材料来排除上述因素的影响, 旨在厘清上述两种假设, 并采用对侧延迟活动作为神经指标, 来进一步探讨概念规律影响工作记忆容量的内在机制。两个行为实验发现, 不论记忆项同时呈现还是序列呈现, 均存在同类别记忆优势效应。脑电实验结果发现相比记忆不同类别客体, 记忆同等数量的同类别客体诱发的对侧延迟活动的幅值更小。上述结果一致表明, 视觉工作记忆可借助概念的方式将同类别客体加以组织, 从而有效扩大视觉工作记忆容量, 支持了同类别优势假说。
图/表 10
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_1.png)
图1一个基本类别的12张动物剪影示例。此示例中动物剪影来自开放版权的网站Pixabay (https://pixabay.com), 仅用于展示。
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_1.png)
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_2.png)
图2实验1流程图(记忆项为4个)
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_2.png)
表1实验1八种条件下的K (M ± SD)
姿态相似性 | 负荷2 | 负荷4 | ||
---|---|---|---|---|
相同类别 | 不同类别 | 相同类别 | 不同类别 | |
高相似姿态 | 1.63 ± 0.20 | 1.34 ± 0.16 | 3.09 ± 0.45 | 1.83 ± 0.69 |
低相似姿态 | 1.59 ± 0.25 | 1.59 ± 0.22 | 2.50 ± 0.78 | 1.80 ± 0.60 |
表1实验1八种条件下的K (M ± SD)
姿态相似性 | 负荷2 | 负荷4 | ||
---|---|---|---|---|
相同类别 | 不同类别 | 相同类别 | 不同类别 | |
高相似姿态 | 1.63 ± 0.20 | 1.34 ± 0.16 | 3.09 ± 0.45 | 1.83 ± 0.69 |
低相似姿态 | 1.59 ± 0.25 | 1.59 ± 0.22 | 2.50 ± 0.78 | 1.80 ± 0.60 |
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_3.png)
图3实验1结果 记忆负荷(a)和姿态(b)对相同或不同类别试次的作用, 记忆负荷对高相似低相似姿态试次的作用(c)。误差线代表被试内95%的置信区间, * p < 0.05, ** p < 0.01
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_3.png)
表2实验2八种条件下的K (M ± SD)
姿态相似性 | 负荷2 | 负荷4 | ||
---|---|---|---|---|
相同类别 | 不同类别 | 相同类别 | 不同类别 | |
高相似姿态 | 1.53 ± 0.27 | 1.31 ± 0.34 | 2.78 ± 0.51 | 1.79 ± 0.46 |
低相似姿态 | 1.53 ± 0.27 | 1.46 ± 0.30 | 2.48 ± 0.48 | 1.46 ± 0.75 |
表2实验2八种条件下的K (M ± SD)
姿态相似性 | 负荷2 | 负荷4 | ||
---|---|---|---|---|
相同类别 | 不同类别 | 相同类别 | 不同类别 | |
高相似姿态 | 1.53 ± 0.27 | 1.31 ± 0.34 | 2.78 ± 0.51 | 1.79 ± 0.46 |
低相似姿态 | 1.53 ± 0.27 | 1.46 ± 0.30 | 2.48 ± 0.48 | 1.46 ± 0.75 |
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_4.png)
图4实验2结果 记忆负荷(a)和姿态(b)对同类或不同类试次的作用, 记忆负荷对高低相似姿态试次的作用(c)。误差线代表被试内95%的置信区间, * p < 0.05, ** p < 0.01
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_4.png)
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_5.png)
图5实验3记忆流程图(记忆负荷为2)
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_5.png)
表3实验3四种条件下的K (M ± SD)
类别 | 负荷2 | 负荷4 |
---|---|---|
相同类别 | 0.97 ± 0.23 | 1.95 ± 0.41 |
不同类别 | 0.86 ± 0.24 | 1.08 ± 0.40 |
表3实验3四种条件下的K (M ± SD)
类别 | 负荷2 | 负荷4 |
---|---|---|
相同类别 | 0.97 ± 0.23 | 1.95 ± 0.41 |
不同类别 | 0.86 ± 0.24 | 1.08 ± 0.40 |
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_6.png)
图6实验3行为结果 记忆负荷对同类或不同类试次的作用。误差线代表被试内95%的置信区间, **p < 0.01
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_6.png)
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_7.png)
图7(a)记忆负荷为2和4时大脑顶叶(P8/P7、P6/P5、P4/P3)和顶枕(PO8/PO7、PO6/PO5、PO4/PO3)区域对侧减同侧波幅。灰色线段表示记忆项序列呈现时段。灰色矩形表示CDA时间窗口。(b)图为平均的对侧延迟活动(CDA)波幅。CDA从记忆序列消失后400 ms开始测量, 误差线表示95%的置信区间, * p < 0.05, ** p < 0.01。
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2021-53-11/Images/0439-755X-53-11-1189/img_7.png)
参考文献 48
[1] | Allen R. J., Baddeley A. D., & Hitch G. J. (2006). Is the binding of visual features in working memory resource- demanding? Journal of Experimental Psychology: General, 135(2), 298-313. 2. 298 |
[2] | Alvarez G. A., & Cavanagh P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111. https://doi.org/10.1111/j.0963-7214.2004.01502006. x |
[3] | Atkinson A. L., Berry E. D., Waterman A. H., Baddeley A. D., Hitch G. J., & Allen R. J. (2018). Are there multiple ways to direct attention in working memory? Annals of the New York Academy of Sciences, 1424(1), 115-126. 1111/nyas. 13634 |
[4] | Awh E., Barton B., & Vogel E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622-628. https://doi.org/10.1111/j.1467-9280.2007.01949. x |
[5] | Bays P. M., & Husain M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851-851. 1158 023 |
[6] | Brady T. F., & Alvarez G.A. (2015). No evidence for a fixed object limit in working memory: Spatial ensemble representations inflate estimates of working memory capacity for complex objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 921-921. |
[7] | Brady T. F., Konkle T., & Alvarez G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4), 487-487. |
[8] | Brady T. F., Konkle T., & Alvarez G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11( 5), 1-34. https://doi.org/10.1167/11. 5. 4 |
[9] | Brady T. F., St?rmer V. S., & Alvarez G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7459-7459. 1073/pnas. 1520027113 |
[10] | Brady T. F., & Tenenbaum J.B. (2013). A probabilistic model of visual working memory: Incorporating higher order regularities into working memory capacity estimates. Psychological Review, 120(1), 85-85. |
[11] | Cohen M. A., Konkle T., Rhee J. Y., Nakayama K., & Alvarez G. A. (2014). Processing multiple visual objects is limited by overlap in neural channels. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 8955-8955. 1073/pnas. 1317860111 |
[12] | Cowan N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-87. org/10.1017/S0140525X01003922 |
[13] | Curby K. M., & Gauthier I. (2007). A visual short-term memory advantage for faces. Psychonomic Bulletin & Review, 14(4), 620-620. |
[14] | Delorme A., & Makeig S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134 2003. 10. 009 |
[15] | Ding X., Zhao Y., Wu F., Lu X., Gao Z., & Shen M. (2015). Binding biological motion and visual features in working memory. Journal of Experimental Psychology: Human Perception and Performance, 41( 3), 850-865. https://doi.org/10.1037/xhp0000061 |
[16] | Gao Z., Gao Q., Tang N., Shui R., & Shen M. (2016). Organization principles in visual working memory: Evidence from sequential stimulus display. Cognition, 146, 277-288. https://doi.org/10.1016/j.cognition. 2015. 10. 005 |
[17] | Gao Z., Li J., Liang J., Chen H., Yin J., & Shen M. (2009). Storing fine detailed information in visual working memory -- Evidence from event-related potentials. Journal of Vision, 9( 7), 17. https://doi.org/10.1167/9. 7. 17 |
[18] | Gao Z., Xu X., Chen Z., Yin J., Shen M., & Shui R. (2011). Contralateral delay activity tracks object identity information in visual short term memory. Brain Research, 1406, 30-42. https://doi.org/10.1016/j.brainres. 2011. 06. 049 |
[19] | Jiang Y. V., Lee H. J., Asaad A., & Remington R. (2016). Similarity effects in visual working memory. Psychonomic Bulletin & Review, 23(2), 476-476. |
[20] | Jiang Y. V., Remington R. W., Asaad A., Lee H. J., & Mikkalson T. C. (2016). Remembering faces and scenes: The mixed-category advantage in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42(9), 1399-1399. |
[21] | Kaiser D., Stein T., & Peelen M. V. (2014). Object grouping based on real-world regularities facilitates perception by reducing competitive interactions in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(30), 11217-11217. org/10.1073/pnas.1400559111 |
[22] | Kaiser D., Stein T., & Peelen M. V. (2015). Real-world spatial regularities affect visual working memory for objects. Psychonomic Bulletin & Review, 22(6), 1784-1784. |
[23] | Kang M. -S., & Woodman, G. F.(2014). The neurophysiological index of visual working memory maintenance is not due to load dependent eye movements. Neuropsychologia, 56, 63-72. https://doi.org/10.1016/j. neuropsychologia. 2013. 12. 028 |
[24] | Lin P.-H., & Luck S. J. (2009). The influence of similarity on visual working memory representations. Visual Cognition, 17(3), 356-356. |
[25] | Lopez-Calderon, J., & Luck, S. J.(2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8 2014. 00213 |
[26] | Luck S. J., & Vogel E.K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-279. |
[27] | Luck S. J., & Vogel E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17 2013. 06. 006 |
[28] | Luria R., Balaban H., Awh E., & Vogel E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience and Biobehavioral Reviews, 62, 100-108. https://doi.org/10.1016/j.neubiorev. 2016. 01. 003 |
[29] | Luria R., Sessa P., Gotler A., Jolicoeur P., & Dell'Acqua R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22 2009. 21214 |
[30] | Luria R., & Vogel E. K. (2014). Come together, right now: Dynamic overwriting of an object's history through common fate. Journal of Cognitive Neuroscience, 26(8), 1819-1819. |
[31] | Mate J., & Baqués J. (2009). Short article: Visual similarity at encoding and retrieval in an item recognition task. Quarterly Journal of Experimental Psychology, 62( 7), 1277-1284. https://doi.org/10.1080/17470210802680769 |
[32] | McCollough A. W., Machizawa M. G., & Vogel E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43(1), 77-77. 9452(08) 70447-7 |
[33] | O'Donnell R. E., Clement A., & Brockmole J. R. (2018). Semantic and functional relationships among objects increase the capacity of visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44( 7), 1151-1158. https://doi.org/10.1037/ xlm0000508 |
[34] | Peirce J. W.(2007). PsychoPy--Psychophysics software in Python. Journal of Neuroscience Methods, 162( 1-2), 8-13. https://doi.org/10.1016/j.jneumeth. 2006. 11. 017 |
[35] | Peterson D. J., G?zenman F., Arciniega H., & Berryhill M. E. (2015). Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations. Attention, Perception & Psychophysics, 77(7), 2270-2270. |
[36] | Qi S., Ding C., & Li H. (2014). Neural correlates of inefficient filtering of emotionally neutral distractors from working memory in trait anxiety. Cognitive, Affective & Behavioral Neuroscience, 14(1), 253-253. |
[37] | Quinlan P. T., & Cohen D.J. (2016). The precategorical nature of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(11), 1694-1694. |
[38] | Rudner M., Orfanidou E., Cardin V., Capek C. M., Woll B., & R?nnberg J. (2016). Preexisting semantic representation improves working memory performance in the visuospatial domain. Memory & Cognition, 44(4), 608-608. org/10.3758/s13421-016-0585-z |
[39] | Sims C. R., Jacobs R. A., & Knill D. C. (2012). An ideal observer analysis of visual working memory. Psychological Review, 119(4), 807-807. |
[40] | Son G., Oh B.-I., Kang M.-S., & Chong S. C. (2020). Similarity-based clusters are representational units of visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46( 1), 46-59. https://doi. org/10.1037/xlm0000722 |
[41] | Song J.-H., & Jiang Y. (2006). Visual working memory for simple and complex features: An fMRI study. NeuroImage, 30 2005. 10. 006 |
[42] | Vogel E. K., & Machizawa M.G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-748. |
[43] | Vogel E. K., McCollough A. W., & Machizawa M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-500. |
[44] | Vogel E. K., Woodman G. F., & Luck S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92-92. 1. 92 |
[45] | Westfall J. (2015). PANGEA: Power analysis for general ANOVA designs. Unpublished manuscript. Retrieved from |
[46] | Williams M., & Woodman G. F. (2012). Directed forgetting and directed remembering in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1206-1206. 1037/ a0027389 |
[47] | Wong J. H., Peterson M. S., & Thompson J. C. (2008). Visual working memory capacity for objects from different categories: A face-specific maintenance effect. Cognition, 108 2008. 06. 006 |
[48] | Zhang Q., Li S., Wang X., & Che X. (2015). The effects of direction similarity in visual working memory: Behavioural and event-related potential studies. Quarterly Journal of Experimental Psychology, 69 2015. 1100206 |
相关文章 15
[1] | 叶超雄, 胡中华, 梁腾飞, 张加峰, 许茜如, 刘强. 视觉工作记忆回溯线索效应的产生机制:认知阶段分离[J]. 心理学报, 2020, 52(4): 399-413. |
[2] | 张頔, 郝仁宁, 刘强. 注意范围分布对视觉工作记忆巩固过程的影响[J]. 心理学报, 2019, 51(7): 772-780. |
[3] | 李寿欣, 车晓玮, 李彦佼, 王丽, 陈恺盛. 视觉工作记忆负载类型对注意选择的影响[J]. 心理学报, 2019, 51(5): 527-542. |
[4] | 王思思, 库逸轩. 右侧背外侧前额叶在视觉工作记忆中的因果性作用[J]. 心理学报, 2018, 50(7): 727-738. |
[5] | 王静, 薛成波, 刘强. 客体同维度特征的视觉工作记忆存储机制[J]. 心理学报, 2018, 50(2): 176-185. |
[6] | 黄羽商, 曹立人. 基于空间方位信息的构型对视觉工作记忆绩效的影响[J]. 心理学报, 2018, 50(11): 1222-1234. |
[7] | 李腾飞, 马 楠, 胡中华, 刘 强. 空间距离对视觉工作记忆巩固的影响[J]. 心理学报, 2017, 49(6): 711-722. |
[8] | 薛成波;叶超雄;张引;刘强. 视觉工作记忆中特征绑定关系的记忆机制[J]. 心理学报, 2015, 47(7): 851-858. |
[9] | 黎翠红;何旭;郭春彦. 多特征刺激在视觉工作记忆中的存储模式[J]. 心理学报, 2015, 47(6): 734-745. |
[10] | 张微;周兵平;臧玲;莫书亮. 网络成瘾倾向者在视觉工作记忆引导下的注意捕获[J]. 心理学报, 2015, 47(10): 1223-1234. |
[11] | 白学军,尹莎莎,杨海波,吕勇,胡伟,罗跃. 视觉工作记忆内容对自上而下注意控制的影响:一项ERP研究[J]. 心理学报, 2011, 43(10): 1103-1113. |
[12] | 张豹,金志成,陈彩琦. 视觉工作记忆对前注意阶段注意定向的调节[J]. 心理学报, 2008, 40(05): 552-561. |
[13] | 沈模卫,李杰,郎学明,高涛,高在峰,水仁德. 客体在视觉工作记忆中的存储机制[J]. 心理学报, 2007, 39(05): 761-767. |
[14] | 陈彩琦,付桂芳, ,金志成. 注意水平对视觉工作记忆客体表征的影响[J]. 心理学报, 2003, 35(05): 591-597. |
[15] | 刘晓平,王兆新, ,陈湘川, ,张达人. 视觉工作记忆中的子系统[J]. 心理学报, 2003, 35(05): 598-603. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=5087