山东师范大学心理学院, 济南 250358
收稿日期:
2020-05-13出版日期:
2021-07-25发布日期:
2021-05-24通讯作者:
张倩,李寿欣E-mail:zhangqian_psy@126.com;shouxinli@sdnu.edu.cn基金资助:
国家自然科学基金面上项目(31871100)Precision requirement of working memory representations influences attentional guidance
CHE Xiaowei, XU Huiyun, WANG Kaixuan, ZHANG Qian(), LI Shouxin()School of Psychology, Shandong Normal University, Jinan 250358, China
Received:
2020-05-13Online:
2021-07-25Published:
2021-05-24Contact:
ZHANG Qian,LI Shouxin E-mail:zhangqian_psy@126.com;shouxinli@sdnu.edu.cn摘要/Abstract
摘要: 采用注意捕获范式, 通过行为和事件相关脑电位(ERP)实验, 探讨工作记忆表征精度加工需求对注意引导的影响, 行为结果发现, 在低精度加工需求条件下, 只有一个工作记忆表征引导注意, 且处于高激活状态的工作记忆表征产生的注意捕获大于低激活状态; 而在高精度加工需求条件下, 有两个工作记忆表征引导注意, 且处于高、低激活状态的工作记忆表征产生的注意捕获没有差异。ERP结果显示, 高精度加工需求条件下诱发的NSW和LPC大于低精度加工需求条件; 在高精度加工需求条件下, 干扰项与记忆项匹配比不匹配时, 诱发更大的N2和更小的N2pc, 而在低精度加工需求条件下, 干扰项与记忆项匹配和不匹配时诱发的N2、N2pc没有差异。研究表明, 工作记忆表征精度加工需求影响注意引导的机制可能是高精度加工需求下, 工作记忆表征消耗的认知资源增加, 搜索目标获得的资源减少, 干扰项捕获的注意增加。
图/表 9
图1CIELab颜色环(Zhang & Luck, 2008)
图1CIELab颜色环(Zhang & Luck, 2008)
图2实验1~4单一试次流程图(第一行是实验1抑制语音编码条件下的实验流程图; 第二行是实验1促进语音编码条件下的实验流程图; 第三行是实验2的实验流程图; 第四行是实验3的实验流程图; 第五行是实验4的实验流程图; 在单一试次中, 视觉搜索任务和记忆检测任务随机呈现一种。图中, 图形中的纹理代表的是不同的彩色)
图2实验1~4单一试次流程图(第一行是实验1抑制语音编码条件下的实验流程图; 第二行是实验1促进语音编码条件下的实验流程图; 第三行是实验2的实验流程图; 第四行是实验3的实验流程图; 第五行是实验4的实验流程图; 在单一试次中, 视觉搜索任务和记忆检测任务随机呈现一种。图中, 图形中的纹理代表的是不同的彩色)
表1实验1~4各条件下, 工作记忆任务的正确率和反应时(M ± 95% CI)
实验 | 实验条件 | 高精度加工需求 | 低精度加工需求 | ||
---|---|---|---|---|---|
正确率 | 反应时 (ms) | 正确率 | 反应时 (ms) | ||
实验1 | |||||
抑制语音编码 | 0.92 ± 0.03 | 0.98 ± 0.01 | |||
促进语音编码 | 0.94 ± 0.02 | 0.99 ± 0.01 | |||
实验2 | |||||
高优先项目 | 0.85 ± 0.04 | 699 ± 53 | 0.94 ± 0.02 | 611 ± 29 | |
低优先项目 | 0.72 ± 0.07 | 878 ± 88 | 0.80 ± 0.05 | 755 ± 61 | |
实验3 | |||||
记忆1个项目 | 0.92 ± 0.02 | 0.99 ± 0.01 | |||
记忆2个项目 | 0.76 ± 0.04 | 0.87 ± 0.03 | |||
实验4 | |||||
0.89 ± 0.03 | 0.98 ± 0.01 |
表1实验1~4各条件下, 工作记忆任务的正确率和反应时(M ± 95% CI)
实验 | 实验条件 | 高精度加工需求 | 低精度加工需求 | ||
---|---|---|---|---|---|
正确率 | 反应时 (ms) | 正确率 | 反应时 (ms) | ||
实验1 | |||||
抑制语音编码 | 0.92 ± 0.03 | 0.98 ± 0.01 | |||
促进语音编码 | 0.94 ± 0.02 | 0.99 ± 0.01 | |||
实验2 | |||||
高优先项目 | 0.85 ± 0.04 | 699 ± 53 | 0.94 ± 0.02 | 611 ± 29 | |
低优先项目 | 0.72 ± 0.07 | 878 ± 88 | 0.80 ± 0.05 | 755 ± 61 | |
实验3 | |||||
记忆1个项目 | 0.92 ± 0.02 | 0.99 ± 0.01 | |||
记忆2个项目 | 0.76 ± 0.04 | 0.87 ± 0.03 | |||
实验4 | |||||
0.89 ± 0.03 | 0.98 ± 0.01 |
表2实验1~4各条件下, 视觉搜索任务的正确率和反应时(M ± 95% CI)
实验 | 实验条件 | 匹配情况 | 高精度加工需求 | 低精度加工需求 | ||
---|---|---|---|---|---|---|
正确率 | 反应时(ms) | 正确率 | 反应时(ms) | |||
实验1 | ||||||
抑制语音编码 | 基线 | 0.98 ± 0.02 | 440 ± 91 | 0.99 ± 0.01 | 438 ± 110 | |
不匹配 | 0.97 ± 0.02 | 475 ± 83 | 0.98 ± 0.01 | 470 ± 99 | ||
匹配 | 0.98 ± 0.02 | 543 ± 88 | 0.98 ± 0.02 | 492 ± 103 | ||
促进语音编码 | 基线 | 0.99 ± 0.01 | 418 ± 75 | 0.99 ± 0.01 | 430 ± 81 | |
不匹配 | 0.98 ± 0.01 | 450 ± 66 | 0.98 ± 0.01 | 468 ± 76 | ||
匹配 | 0.98 ± 0.01 | 547 ± 75 | 0.98 ± 0.01 | 517 ± 78 | ||
实验2 | ||||||
基线 | 0.99 ± 0.01 | 554 ± 138 | 0.99 ± 0.01 | 514 ± 113 | ||
不匹配 | 0.97 ± 0.02 | 577 ± 121 | 0.98 ± 0.02 | 570 ± 102 | ||
高优先匹配 | 0.98 ± 0.01 | 614 ± 123 | 0.99 ± 0.01 | 610 ± 103 | ||
低优先匹配 | 0.97 ± 0.02 | 630 ± 127 | 0.98 ± 0.01 | 574 ± 108 | ||
实验3 | ||||||
记忆1个项目 | 基线 | 0.97 ± 0.02 | 470 ± 128 | 0.97 ± 0.02 | 471 ± 132 | |
匹配0 | 0.98 ± 0.02 | 523 ± 119 | 0.95 ± 0.02 | 488 ± 109 | ||
匹配1 | 0.97 ± 0.02 | 565 ± 108 | 0.97 ± 0.02 | 554 ± 123 | ||
记忆2个项目 | 基线 | 0.98 ± 0.02 | 480 ± 132 | 0.97 ± 0.02 | 477 ± 125 | |
匹配0 | 0.98 ± 0.01 | 492 ± 111 | 0.98 ± 0.01 | 498 ± 116 | ||
匹配1 | 0.98 ± 0.02 | 544 ± 116 | 0.96 ± 0.02 | 500 ± 99 | ||
匹配2 | 0.98 ± 0.01 | 593 ± 111 | 0.98 ± 0.01 | 541 ± 117 | ||
实验4 | ||||||
基线 | 0.96 ± 0.03 | 755 ± 51 | 0.98 ± 0.01 | 756 ± 48 | ||
不匹配 | 0.96 ± 0.03 | 747 ± 42 | 0.98 ± 0.02 | 755 ± 48 | ||
匹配 | 0.95 ± 0.02 | 817 ± 47 | 0.96 ± 0.02 | 803 ± 51 |
表2实验1~4各条件下, 视觉搜索任务的正确率和反应时(M ± 95% CI)
实验 | 实验条件 | 匹配情况 | 高精度加工需求 | 低精度加工需求 | ||
---|---|---|---|---|---|---|
正确率 | 反应时(ms) | 正确率 | 反应时(ms) | |||
实验1 | ||||||
抑制语音编码 | 基线 | 0.98 ± 0.02 | 440 ± 91 | 0.99 ± 0.01 | 438 ± 110 | |
不匹配 | 0.97 ± 0.02 | 475 ± 83 | 0.98 ± 0.01 | 470 ± 99 | ||
匹配 | 0.98 ± 0.02 | 543 ± 88 | 0.98 ± 0.02 | 492 ± 103 | ||
促进语音编码 | 基线 | 0.99 ± 0.01 | 418 ± 75 | 0.99 ± 0.01 | 430 ± 81 | |
不匹配 | 0.98 ± 0.01 | 450 ± 66 | 0.98 ± 0.01 | 468 ± 76 | ||
匹配 | 0.98 ± 0.01 | 547 ± 75 | 0.98 ± 0.01 | 517 ± 78 | ||
实验2 | ||||||
基线 | 0.99 ± 0.01 | 554 ± 138 | 0.99 ± 0.01 | 514 ± 113 | ||
不匹配 | 0.97 ± 0.02 | 577 ± 121 | 0.98 ± 0.02 | 570 ± 102 | ||
高优先匹配 | 0.98 ± 0.01 | 614 ± 123 | 0.99 ± 0.01 | 610 ± 103 | ||
低优先匹配 | 0.97 ± 0.02 | 630 ± 127 | 0.98 ± 0.01 | 574 ± 108 | ||
实验3 | ||||||
记忆1个项目 | 基线 | 0.97 ± 0.02 | 470 ± 128 | 0.97 ± 0.02 | 471 ± 132 | |
匹配0 | 0.98 ± 0.02 | 523 ± 119 | 0.95 ± 0.02 | 488 ± 109 | ||
匹配1 | 0.97 ± 0.02 | 565 ± 108 | 0.97 ± 0.02 | 554 ± 123 | ||
记忆2个项目 | 基线 | 0.98 ± 0.02 | 480 ± 132 | 0.97 ± 0.02 | 477 ± 125 | |
匹配0 | 0.98 ± 0.01 | 492 ± 111 | 0.98 ± 0.01 | 498 ± 116 | ||
匹配1 | 0.98 ± 0.02 | 544 ± 116 | 0.96 ± 0.02 | 500 ± 99 | ||
匹配2 | 0.98 ± 0.01 | 593 ± 111 | 0.98 ± 0.01 | 541 ± 117 | ||
实验4 | ||||||
基线 | 0.96 ± 0.03 | 755 ± 51 | 0.98 ± 0.01 | 756 ± 48 | ||
不匹配 | 0.96 ± 0.03 | 747 ± 42 | 0.98 ± 0.02 | 755 ± 48 | ||
匹配 | 0.95 ± 0.02 | 817 ± 47 | 0.96 ± 0.02 | 803 ± 51 |
图3实验1~3各条件下基于工作记忆的注意捕获效应量(其中, 图A是实验1的结果; 图B是实验2的结果; 图C是实验3的结果; 竖线表示95%置信区间, * p < 0.05, ** p < 0.01)
图3实验1~3各条件下基于工作记忆的注意捕获效应量(其中, 图A是实验1的结果; 图B是实验2的结果; 图C是实验3的结果; 竖线表示95%置信区间, * p < 0.05, ** p < 0.01)
图4实验4高低精度条件下记忆项诱发的NSW成分(灰色区域表示600~1000 ms时间窗口)
图4实验4高低精度条件下记忆项诱发的NSW成分(灰色区域表示600~1000 ms时间窗口)
图5实验4高低精度条件下记忆项诱发的LPC成分(灰色区域表示450~1000 ms时间窗口)
图5实验4高低精度条件下记忆项诱发的LPC成分(灰色区域表示450~1000 ms时间窗口)
图6实验4不同条件下, 搜索项诱发的N2及其波幅值(其中, 图A是高精度加工需求条件下Fz、FCz和Cz电极点的N2波形图; 图B 是低精度加工需求条件下Fz、FCz和Cz电极点的N2波形图; 图C是N2波形图的标尺; 图D是不同条件下N2的平均波幅, 竖线表示95%置信区间, * p < 0.05, ** p < 0.01)
图6实验4不同条件下, 搜索项诱发的N2及其波幅值(其中, 图A是高精度加工需求条件下Fz、FCz和Cz电极点的N2波形图; 图B 是低精度加工需求条件下Fz、FCz和Cz电极点的N2波形图; 图C是N2波形图的标尺; 图D是不同条件下N2的平均波幅, 竖线表示95%置信区间, * p < 0.05, ** p < 0.01)
图7实验4不同条件下搜索项诱发的N2pc及其波幅值(图A是高精度加工需求条件下目标项出现同侧、对侧PO7/8电极点的波形图以及搜索目标项诱发的N2pc波形图; 图B 是低精度加工需求条件下目标项出现同侧、对侧PO7/8电极点的波形图以及搜索目标项诱发的N2pc波形图; 图C是N2pc波形图的标尺, 灰色区域表示260~360 ms时间窗口; 图D是不同条件下N2pc的平均波幅, 竖线表示95%置信区间, ** p < 0.01, *** p < 0.001)
图7实验4不同条件下搜索项诱发的N2pc及其波幅值(图A是高精度加工需求条件下目标项出现同侧、对侧PO7/8电极点的波形图以及搜索目标项诱发的N2pc波形图; 图B 是低精度加工需求条件下目标项出现同侧、对侧PO7/8电极点的波形图以及搜索目标项诱发的N2pc波形图; 图C是N2pc波形图的标尺, 灰色区域表示260~360 ms时间窗口; 图D是不同条件下N2pc的平均波幅, 竖线表示95%置信区间, ** p < 0.01, *** p < 0.001)
参考文献 55
[1] | Al-Aidroos, N., Emrich, S. M., Ferber, S., & Pratt, J. (2012). Visual working memory supports the inhibition of previously processed information: Evidence from preview search. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 643-663. doi: 10.1037/a0025707URL |
[2] | Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: Configuring attention to ignore task-irrelevant features. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 580-584. doi: 10.1037/a0027885URL |
[3] | Bae, G. Y., & Luck, S. J. (2017). Interactions between visual working memory representations. Attention, Perception, & Psychophysics, 79(8), 2376-2395. |
[4] | Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851-854. doi: 10.1126/science.1158023URL |
[5] | Beck, V. M., & Hollingworth, A. (2017). Competition in saccade target selection reveals attentional guidance by simultaneously active working memory representations. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 225-230. doi: 10.1037/xhp0000306URL |
[6] | Beck, V. M., Hollingworth, A., & Luck, S. J. (2012). Simultaneous control of attention by multiple working memory representations. Psychological Science, 23(8), 887-898. doi: 10.1177/0956797612439068URL |
[7] | Berggren, N., & Eimer, M. (2018). Object-based target templates guide attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 44(9), 1368-1382. |
[8] | Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. pmid: 19565683 |
[9] | Cowan, N. (2011). The focus of attention as observed in visual working memory tasks: Making sense of competing claims. Neuropsychologia, 49(6), 1401-1406. |
[10] | Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193-222. doi: 10.1146/annurev.ne.18.030195.001205URL |
[11] | Downing, P., & Dodds, C. (2004). Competition in visual working memory for control of search. Visual Cognition, 11(6), 689-703. doi: 10.1080/13506280344000446URL |
[12] | Dube, B., & Al-Aidroos, N. (2019). Distinct prioritization of visual working memory representations for search and for recall. Attention, Perception, & Psychophysics, 81(5), 1253-1261. |
[13] | Dube, B., Basciano, A., Emrich, S. M., & Al-Aidroos, N. (2016). Visual working memory simultaneously guides facilitation and inhibition during visual search. Attention, Perception, & Psychophysics, 78(5), 1232-1244. |
[14] | Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458. pmid: 2756067 |
[15] | Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225-234. pmid: 8862112 |
[16] | Emrich, S. M., Al-Aidroos, N., Pratt, J., & Ferber, S. (2010). Finding memory in search: The effect of visual working memory load on visual search. Quarterly Journal of Experimental Psychology, 63(8), 1457-1466. |
[17] | Ester, E. F., Anderson, D. E., Serences, J. T., & Awh, E. (2013). A neural measure of precision in visual working memory. Journal of Cognitive Neuroscience, 25(5), 754-761. doi: 10.1162/jocn_a_00357URL |
[18] | Fan, L. X., Sun, M. D., Xu, M. S., Li, Z. A., Diao, L. T., & Zhang, X. M. (2019). Multiple representations in visual working memory simultaneously guide attention: The type of memory- matching representation matters. Acta Psychologica, 192, 126-137. doi: 10.1016/j.actpsy.2018.11.005URL |
[19] | Feredoes, E., Heinen, K., Weiskopf, N., Ruff, C., & Driver, J. (2011). Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory. Proceedings of the National Academy of Sciences, 108(42), 17510-17515. doi: 10.1073/pnas.1106439108URL |
[20] | Gao, Z. F., Ding, X. W., Yang, T., Liang, J. Y., & Shui, R. (2013). Coarse-to-fine construction for high-resolution representation in visual working memory. PLoS ONE, 8(2), e57913. doi: 10.1371/journal.pone.0057913URL |
[21] | Gao, Z. F., Xu, X. T., Chen, Z. B., Yin, J., Shen, M. W., & Shui, R. (2011). Contralateral delay activity tracks object identity information in visual short term memory. Brain Research, 1406, 30-42. doi: 10.1016/j.brainres.2011.06.049URL |
[22] | Gunseli, E., Meeter, M., & Olivers, C. N. L. (2014). Is a search template an ordinary working memory? Comparing electrophysiological markers of working memory maintenance for visual search and recognition. Neuropsychologia, 60, 29-38. doi: 10.1016/j.neuropsychologia.2014.05.012pmid: 24878275 |
[23] | He, X., Zhang, W. W., Li, C. H., & Guo, C. Y. (2015). Precision requirements do not affect the allocation of visual working memory capacity. Brain Research, 1602, 136-143. doi: 10.1016/j.brainres.2015.01.028URL |
[24] | Heil, M., Osman, A., Wiegelmann, J., Rolke, B., & Hennighausen, E. (2000). N200 in the Eriksen-task: Inhibitory executive process? Journal of Psychophysiology, 14(4), 218-225. doi: 10.1027//0269-8803.14.4.218URL |
[25] | Hitch, G. J., Allen, R. J., & Baddeley, A. D. (2020). Attention and binding in visual working memory: Two forms of attention and two kinds of buffer storage. Attention, Perception, & Psychophysics, 82(1), 280-293. doi: 10.3758/s13414-019-01837-xURL |
[26] | Hollingworth, A., & Beck, V. M. (2016). Memory-based attention capture when multiple items are maintained in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42(7), 911-917. doi: 10.1037/xhp0000230URL |
[27] | Houtkamp, R., & Roelfsema, P. R. (2009). Matching of visual input to only one item at any one time. Psychological Research, 73(3), 317-326. doi: 10.1007/s00426-008-0157-3pmid: 18665392 |
[28] | Hu, Y. M., Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2016). Executive control of stimulus-driven and goal-directed attention in visual working memory. Attention, Perception, & Psychophysics, 78(7), 2164-2175. |
[29] | Kahneman, D. (1973). Attention and effort(Vol. 1063). Englewood Cliffs, NJ: Prentice-Hall. |
[30] | Kanske, P., & Kotz, S. A. (2010). Modulation of early conflict processing: N200 responses to emotional words in a flanker task. Neuropsychologia, 48(12), 3661-3664. doi: 10.1016/j.neuropsychologia.2010.07.021URL |
[31] | Kerzel, D., & Witzel, C. (2019). The allocation of resources in visual working memory and multiple attentional templates. Journal of Experimental Psychology: Human Perception and Performance, 45(5), 645-658. doi: 10.1037/xhp0000637URL |
[32] | Kursawe, M. A., & Zimmer, H. D. (2015). Costs of storing colour and complex shape in visual working memory: Insights from pupil size and slow waves. Acta Psychologica, 158, 67-77. doi: 10.1016/j.actpsy.2015.04.004URL |
[33] | Li, C. H., He, X., & Guo, C. Y. (2015). The storage mechanism of multi-feature objects in visual working memory. Acta Psychologica Sinica, 47(6), 734-745. doi: 10.3724/SP.J.1041.2015.00734URL |
[黎翠红, 何旭, 郭春彦. (2015). 多特征刺激在视觉工作记忆中的存储模式. 心理学报, 47(6), 734-745.] | |
[34] | Li, S. X., Che, X. W., Li, Y. J., Wang, L., & Chen, K. S. (2019). The effects of capacity load and resolution load on visual selective attention during visual working memory. Acta Psychologica Sinica, 51(5), 527-542. doi: 10.3724/SP.J.1041.2019.00527URL |
[李寿欣, 车晓玮, 李彦佼, 王丽, 陈恺盛. (2019). 视觉工作记忆负载类型对注意选择的影响. 心理学报, 51(5), 527-542.] | |
[35] | Li, X. B., Ouyang, Z. Z., & Luo, Y. J. (2010). The effect of cognitive load on interaction pattern of emotion and working memory: An ERP study. In The 9th IEEE International Conference on Cognitive Informatics (pp.61-67). Beijing, China: IEEE Computer Society. |
[36] | Luria, R., Sessa, P., Gotler, A., Jolicœur, P., & Dell'Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22(3), 496-512. doi: 10.1162/jocn.2009.21214URL |
[37] | Machizawa, M. G., Goh, C. C. W., & Driver, J. (2012). Human visual short-term memory precision can be varied at will when the number of retained items is low. Psychological Science, 23(6), 554-559. doi: 10.1177/0956797611431988pmid: 22527526 |
[38] | Morcos, A. S., & Harvey, C. D. (2016). History-dependent variability in population dynamics during evidence accumulation in cortex. Nature Neuroscience, 19(12), 1672-1681. |
[39] | Olivers, C. N. L. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1275-1291. |
[40] | Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327-334. |
[41] | Ort, E., Fahrenfort, J. J., & Olivers, C. N. (2017). Lack of free choice reveals the cost of having to search for more than one object. Psychological Science, 28(8), 1137-1147. |
[42] | Panichello, M. F., DePasquale, B., Pillow, J. W., & Buschman, T. J. (2019). Error-correcting dynamics in visual working memory. Nature Communications, 10(1), 3366. doi: 10.1038/s41467-019-11298-3pmid: 31358740 |
[43] | Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455-1470. |
[44] | Schurgin, M. W., Wixted, J. T., & Brady, T. F. (2020). Psychophysical scaling reveals a unified theory of visual memory strength. Nature Human Behaviour, 4(11), 1156-1172. |
[45] | Shen, M., Huang, X., & Gao, Z. (2015). Object-based attention underlies the rehearsal of feature binding in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 41(2), 479-493. doi: 10.1037/xhp0000018URL |
[46] | Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248-261. doi: 10.1037/0096-1523.31.2.248URL |
[47] | Souza, A. S., & Skóra, Z. (2017). The interplay of language and visual perception in working memory. Cognition, 166, 277-297. doi: 10.1016/j.cognition.2017.05.038URL |
[48] | van Moorselaar, D., Theeuwes, J., & Olivers, C. N. L. (2014). In competition for the attentional template: Can multiple items within visual working memory guide attention? Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1450-1464. |
[49] | Wen, W., Hou, Y., & Li, S. (2018). Memory guidance in distractor suppression is governed by the availability of cognitive control. Attention, Perception, & Psychophysics, 80(5), 1157-1168. |
[50] | Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363-377. doi: 10.1037/0096-1523.33.2.363URL |
[51] | Yang, P., Wang, M., Jin, Z. L., & Li, L. (2015). Visual short-term memory load modulates the early attention and perception of task-irrelevant emotional faces. Frontiers in Human Neuroscience, 9, 490. |
[52] | Zhang, W. W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235. doi: 10.1038/nature06860URL |
[53] | Zhang, W. W., & Luck, S. J. (2011). The number and quality of representations in working memory. Psychological Science, 22(11), 1434-1441. |
[54] | Zhang, W. W., & Luck, S. J. (2015). Opposite effects of capacity load and resolution load on distractor processing. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 22-27. doi: 10.1037/xhp0000013URL |
[55] | Zhao, Y. J., Kuai, S. G., Zanto, T. P., & Ku, Y. X. (2020). Neural correlates underlying the precision of visual working memory. Neuroscience, 425, 301-311. |
相关文章 15
[1] | 黄月胜, 张豹, 范兴华, 黄杰. 无关工作记忆表征的负性情绪信息能否捕获视觉注意?一项眼动研究[J]. 心理学报, 2021, 53(1): 26-37. |
[2] | 郑旭涛, 郭文姣, 陈满, 金佳, 尹军. 社会行为的效价信息对注意捕获的影响:基于帮助和阻碍行为的探讨[J]. 心理学报, 2020, 52(5): 584-596. |
[3] | 李毕琴, 李玲, 王爱君, 张明. 言语工作记忆内容在语义水平的注意捕获[J]. 心理学报, 2018, 50(5): 483-493. |
[4] | 王慧媛, 隋洁, 张明. 语义关联的注意捕获——来自线索化范式的证据[J]. 心理学报, 2018, 50(10): 1071-1082. |
[5] | 刘丽;白学军. 注意控制定势和线索类型在注意捕获中的作用[J]. 心理学报, 2016, 48(9): 1093-1104. |
[6] | 王慧媛; 隋洁; 张明. 线索靶子关联和搜索策略对注意捕获的作用 ——来自意义线索的证据[J]. 心理学报, 2016, 48(7): 783-793. |
[7] | 白学军; 刘丽; 宋娟; 郭志英. 特征和位置信息在价值驱动注意捕获中的作用[J]. 心理学报, 2016, 48(11): 1357-1369. |
[8] | 胡艳梅;张明. 基于记忆的注意捕获和注意抑制效应:ERP证据[J]. 心理学报, 2016, 48(1): 12-21. |
[9] | 张豹;邵嘉莹;胡岑楼;黄赛. 工作记忆表征的激活与抑制状态对注意引导效应的影响[J]. 心理学报, 2015, 47(9): 1089-1100. |
[10] | 张微;周兵平;臧玲;莫书亮. 网络成瘾倾向者在视觉工作记忆引导下的注意捕获[J]. 心理学报, 2015, 47(10): 1223-1234. |
[11] | 王慧媛;张明;隋洁. 线索靶子关联和搜索策略对注意捕获的作用[J]. 心理学报, 2014, 46(2): 185-195. |
[12] | 刘丽;李运;李力红;白学军. 自上而下的注意控制定势在注意捕获中的作用[J]. 心理学报, 2014, 46(10): 1442-1453. |
[13] | 张豹;黄赛;候秋霞. 工作记忆表征捕获眼动中的颜色优先性[J]. 心理学报, 2014, 46(1): 17-26. |
[14] | 张豹;黄赛;祁禄. 工作记忆表征引导视觉注意选择的眼动研究[J]. 心理学报, 2013, 45(2): 139-148. |
[15] | 胡中华,赵光,刘强,李红. 视觉搜索任务中直视探测优势的眼动研究[J]. 心理学报, 2012, 44(4): 435-445. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4970