认知与人类行为湖南省重点实验室, 长沙 410081
收稿日期:
2020-06-14出版日期:
2020-12-25发布日期:
2020-10-26通讯作者:
陈杰E-mail:xlxchen@163.com基金资助:
* 国家自然科学基金(31771240);湖南省哲学社会科学基金(15YBA263);湖南省教育厅科学研究项目(18A036)The relationship between musical training and inhibitory control: An ERPs study
CHEN Jiejia, ZHOU Yi, CHEN Jie()Cognition and Human Behavior Key Laboratory of Hunan Province, Changsha 410081, China
Received:
2020-06-14Online:
2020-12-25Published:
2020-10-26Contact:
CHEN Jie E-mail:xlxchen@163.com摘要/Abstract
摘要: 抑制控制是人类非常重要的认知功能之一, 它对个体适应环境具有重要的意义。本研究将抑制控制细分为反应抑制和冲突控制, 采用Go/No-go和Stroop任务从行为和脑电层面, 考察了音乐训练与抑制控制能力的关系及其认知神经机制。结果发现:在行为指标上, 音乐训练组比控制组的Stroop干扰效应更小, 但两组被试在Go/No-go任务表现上没有差异。在脑电指标上, 在Go/No-go任务中音乐训练组的N2差异波和P3差异波波幅(No-go减Go条件)显著大于控制组, 在Stroop任务中音乐训练组的N450差异波波幅(不一致减一致条件)也显著大于控制组, 但两组被试的SP差异波波幅(不一致减一致条件)无显著差异。结果表明:音乐训练组被试在反应抑制任务中可能具有更强的冲突监控和运动抑制能力, 在冲突控制任务中也具有更强的冲突监控能力。本研究从电生理的层面反映了音乐训练与抑制控制能力的提升具有一定的关联。
图/表 7
表1被试人口学资料
编号 | 年龄(岁) | 社会经济地位 | 智力 | 训练开始 年龄(岁) | 训练时长 (年) | 乐器(首个为主修乐器) | 每周练习 时间(小时) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | C | M | C | M | C | M | C | M | C | M | C | M | C | |
1 | 19 | 23 | 3.5 | 1.5 | 10 | 9 | 5 | 无 | 8 | 无 | 小提琴, 吉他 | 无 | 18 | 无 |
2 | 18 | 18 | 3.0 | 2.5 | 10 | 9 | 9 | 无 | 8 | 无 | 古筝, 钢琴, 陶笛 | 无 | 5 | 无 |
3 | 18 | 18 | 3.5 | 2.5 | 11 | 7 | 5 | 无 | 8 | 无 | 钢琴 | 无 | 6 | 无 |
4 | 22 | 20 | 3.5 | 3.5 | 9 | 12 | 6 | 无 | 15 | 无 | 小提琴, 钢琴 | 无 | 9 | 无 |
5 | 23 | 19 | 3.0 | 2.5 | 11 | 7 | 6 | 无 | 12 | 无 | 钢琴, 小提琴 | 无 | 14 | 无 |
6 | 22 | 23 | 2.0 | 4.0 | 7 | 10 | 12 | 无 | 8 | 无 | 钢琴 | 无 | 10 | 无 |
7 | 20 | 20 | 3.0 | 2.0 | 11 | 9 | 10 | 无 | 8 | 无 | 古筝, 钢琴, 手风琴 | 无 | 5 | 无 |
8 | 20 | 17 | 2.5 | 3.5 | 7 | 6 | 5 | 无 | 14 | 无 | 钢琴 | 无 | 13 | 无 |
9 | 21 | 19 | 3.0 | 2.0 | 3 | 12 | 5 | 无 | 15 | 无 | 钢琴 | 无 | 16 | 无 |
10 | 19 | 19 | 2.0 | 3.0 | 8 | 7 | 7 | 无 | 11 | 无 | 古筝, 钢琴 | 无 | 12 | 无 |
11 | 20 | 18 | 3.5 | 3.0 | 10 | 6 | 11 | 无 | 8 | 无 | 钢琴 | 无 | 10 | 无 |
12 | 20 | 20 | 2.0 | 2.5 | 6 | 10 | 10 | 无 | 9 | 无 | 大提琴 | 无 | 9 | 无 |
13 | 20 | 19 | 3.5 | 3.5 | 11 | 11 | 5 | 无 | 14 | 无 | 中提琴, 小提琴, 吉他 | 无 | 8 | 无 |
14 | 20 | 22 | 4.0 | 2.5 | 8 | 9 | 5 | 无 | 13 | 无 | 钢琴 | 无 | 11 | 无 |
15 | 19 | 24 | 3.0 | 2.0 | 7 | 7 | 9 | 无 | 10 | 无 | 小提琴 | 无 | 10 | 无 |
16 | 19 | 19 | 3.0 | 1.5 | 9 | 9 | 6 | 无 | 12 | 无 | 钢琴, 扬琴 | 无 | 15 | 无 |
17 | 20 | 20 | 3.0 | 4.0 | 7 | 6 | 5 | 无 | 14 | 无 | 钢琴 | 无 | 12 | 无 |
18 | 20 | 19 | 3.5 | 3.0 | 11 | 7 | 9 | 无 | 8 | 无 | 古筝, 钢琴, 扬琴, 大提琴 | 无 | 13 | 无 |
19 | 20 | 18 | 3.5 | 1.5 | 11 | 8 | 12 | 无 | 8 | 无 | 笙, 钢琴, 葫芦丝, 唢呐, 萧 | 无 | 10 | 无 |
20 | 19 | 20 | 3.0 | 2.5 | 10 | 8 | 6 | 无 | 12 | 无 | 钢琴 | 无 | 8 | 无 |
21 | 19 | 18 | 3.0 | 2.5 | 10 | 8 | 7 | 无 | 10 | 无 | 小提琴, 中提琴, 钢琴 | 无 | 6 | 无 |
22 | 20 | 19 | 4.0 | 4.5 | 12 | 5 | 6 | 无 | 13 | 无 | 钢琴 | 无 | 10 | 无 |
23 | 20 | 25 | 2.5 | 3.0 | 11 | 9 | 6 | 无 | 12 | 无 | 小提琴, 钢琴 | 无 | 5 | 无 |
表1被试人口学资料
编号 | 年龄(岁) | 社会经济地位 | 智力 | 训练开始 年龄(岁) | 训练时长 (年) | 乐器(首个为主修乐器) | 每周练习 时间(小时) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | C | M | C | M | C | M | C | M | C | M | C | M | C | |
1 | 19 | 23 | 3.5 | 1.5 | 10 | 9 | 5 | 无 | 8 | 无 | 小提琴, 吉他 | 无 | 18 | 无 |
2 | 18 | 18 | 3.0 | 2.5 | 10 | 9 | 9 | 无 | 8 | 无 | 古筝, 钢琴, 陶笛 | 无 | 5 | 无 |
3 | 18 | 18 | 3.5 | 2.5 | 11 | 7 | 5 | 无 | 8 | 无 | 钢琴 | 无 | 6 | 无 |
4 | 22 | 20 | 3.5 | 3.5 | 9 | 12 | 6 | 无 | 15 | 无 | 小提琴, 钢琴 | 无 | 9 | 无 |
5 | 23 | 19 | 3.0 | 2.5 | 11 | 7 | 6 | 无 | 12 | 无 | 钢琴, 小提琴 | 无 | 14 | 无 |
6 | 22 | 23 | 2.0 | 4.0 | 7 | 10 | 12 | 无 | 8 | 无 | 钢琴 | 无 | 10 | 无 |
7 | 20 | 20 | 3.0 | 2.0 | 11 | 9 | 10 | 无 | 8 | 无 | 古筝, 钢琴, 手风琴 | 无 | 5 | 无 |
8 | 20 | 17 | 2.5 | 3.5 | 7 | 6 | 5 | 无 | 14 | 无 | 钢琴 | 无 | 13 | 无 |
9 | 21 | 19 | 3.0 | 2.0 | 3 | 12 | 5 | 无 | 15 | 无 | 钢琴 | 无 | 16 | 无 |
10 | 19 | 19 | 2.0 | 3.0 | 8 | 7 | 7 | 无 | 11 | 无 | 古筝, 钢琴 | 无 | 12 | 无 |
11 | 20 | 18 | 3.5 | 3.0 | 10 | 6 | 11 | 无 | 8 | 无 | 钢琴 | 无 | 10 | 无 |
12 | 20 | 20 | 2.0 | 2.5 | 6 | 10 | 10 | 无 | 9 | 无 | 大提琴 | 无 | 9 | 无 |
13 | 20 | 19 | 3.5 | 3.5 | 11 | 11 | 5 | 无 | 14 | 无 | 中提琴, 小提琴, 吉他 | 无 | 8 | 无 |
14 | 20 | 22 | 4.0 | 2.5 | 8 | 9 | 5 | 无 | 13 | 无 | 钢琴 | 无 | 11 | 无 |
15 | 19 | 24 | 3.0 | 2.0 | 7 | 7 | 9 | 无 | 10 | 无 | 小提琴 | 无 | 10 | 无 |
16 | 19 | 19 | 3.0 | 1.5 | 9 | 9 | 6 | 无 | 12 | 无 | 钢琴, 扬琴 | 无 | 15 | 无 |
17 | 20 | 20 | 3.0 | 4.0 | 7 | 6 | 5 | 无 | 14 | 无 | 钢琴 | 无 | 12 | 无 |
18 | 20 | 19 | 3.5 | 3.0 | 11 | 7 | 9 | 无 | 8 | 无 | 古筝, 钢琴, 扬琴, 大提琴 | 无 | 13 | 无 |
19 | 20 | 18 | 3.5 | 1.5 | 11 | 8 | 12 | 无 | 8 | 无 | 笙, 钢琴, 葫芦丝, 唢呐, 萧 | 无 | 10 | 无 |
20 | 19 | 20 | 3.0 | 2.5 | 10 | 8 | 6 | 无 | 12 | 无 | 钢琴 | 无 | 8 | 无 |
21 | 19 | 18 | 3.0 | 2.5 | 10 | 8 | 7 | 无 | 10 | 无 | 小提琴, 中提琴, 钢琴 | 无 | 6 | 无 |
22 | 20 | 19 | 4.0 | 4.5 | 12 | 5 | 6 | 无 | 13 | 无 | 钢琴 | 无 | 10 | 无 |
23 | 20 | 25 | 2.5 | 3.0 | 11 | 9 | 6 | 无 | 12 | 无 | 小提琴, 钢琴 | 无 | 5 | 无 |
图1Go/No-go和Stroop实验中音乐训练组和控制组行为表现。(a) Go/No-go辨别力指数d'分数 = z(No-go击中率) - z(Go虚报率); (b)反应时的Stroop干扰效应 = 不一致试次反应时减一致试次反应时, 正确率的Stroop干扰效应 = 一致试次正确率减不一致试次正确率。n.s.表示 p > 0.05即没有显著差异, * p < 0.05。
图1Go/No-go和Stroop实验中音乐训练组和控制组行为表现。(a) Go/No-go辨别力指数d'分数 = z(No-go击中率) - z(Go虚报率); (b)反应时的Stroop干扰效应 = 不一致试次反应时减一致试次反应时, 正确率的Stroop干扰效应 = 一致试次正确率减不一致试次正确率。n.s.表示 p > 0.05即没有显著差异, * p < 0.05。
表2两组被试在Go/No-go和Stroop任务中的正确率(%)、反应时(ms)和ERP波幅(μV)的差异比较
抑制控制 | 控制组M (SD) | 音乐训练组M (SD) | F(1, 44) | p |
---|---|---|---|---|
Go/No-go | ||||
行为 | ||||
Go正确率 | 99.35 (1.72) | 99.83 (0.65) | 1.55 | 0.22 |
No-go正确率 | 96.22 (4.40) | 96.00 (3.93) | 0.03 | 0.86 |
ERP | ||||
Go N2 | 2.72 (3.33) | 7.85 (4.51) | 19.24 | 0.001*** |
No-go N2 | 1.69 (3.62) | 5.27 (5.55) | 6.69 | 0.013* |
Go P3 | 6.49 (3.62) | 11.83 (4.76) | 18.37 | 0.001*** |
No-go P3 | 8.05 (4.12) | 15.27 (5.98) | 22.70 | 0.001*** |
Stroop | ||||
行为 | ||||
一致 正确率 | 89.30 (7.89) | 93.26 (5.11) | 4.07 | 0.05* |
不一致 正确率 | 75.70 (12.91) | 84.48 (8.64) | 7.36 | 0.01** |
一致 反应时 | 636.48 (41.50) | 584.39 (61.18) | 11.42 | 0.002** |
不一致 反应时 | 700.90 (42.88) | 657.93 (70.24) | 6.27 | 0.016* |
ERP | ||||
一致 N450 | 1.20(3.00) | 4.13 (5.13) | 5.62 | 0.022* |
不一致 N450 | 0.41 (2.55) | 2.29 (4.19) | 3.39 | 0.07 |
一致 SP | -5.08 (3.26) | -4.84 (4.40) | 0.04 | 0.84 |
不一致 SP | -3.54 (3.14) | -3.49 (3.88) | 0.003 | 0.96 |
表2两组被试在Go/No-go和Stroop任务中的正确率(%)、反应时(ms)和ERP波幅(μV)的差异比较
抑制控制 | 控制组M (SD) | 音乐训练组M (SD) | F(1, 44) | p |
---|---|---|---|---|
Go/No-go | ||||
行为 | ||||
Go正确率 | 99.35 (1.72) | 99.83 (0.65) | 1.55 | 0.22 |
No-go正确率 | 96.22 (4.40) | 96.00 (3.93) | 0.03 | 0.86 |
ERP | ||||
Go N2 | 2.72 (3.33) | 7.85 (4.51) | 19.24 | 0.001*** |
No-go N2 | 1.69 (3.62) | 5.27 (5.55) | 6.69 | 0.013* |
Go P3 | 6.49 (3.62) | 11.83 (4.76) | 18.37 | 0.001*** |
No-go P3 | 8.05 (4.12) | 15.27 (5.98) | 22.70 | 0.001*** |
Stroop | ||||
行为 | ||||
一致 正确率 | 89.30 (7.89) | 93.26 (5.11) | 4.07 | 0.05* |
不一致 正确率 | 75.70 (12.91) | 84.48 (8.64) | 7.36 | 0.01** |
一致 反应时 | 636.48 (41.50) | 584.39 (61.18) | 11.42 | 0.002** |
不一致 反应时 | 700.90 (42.88) | 657.93 (70.24) | 6.27 | 0.016* |
ERP | ||||
一致 N450 | 1.20(3.00) | 4.13 (5.13) | 5.62 | 0.022* |
不一致 N450 | 0.41 (2.55) | 2.29 (4.19) | 3.39 | 0.07 |
一致 SP | -5.08 (3.26) | -4.84 (4.40) | 0.04 | 0.84 |
不一致 SP | -3.54 (3.14) | -3.49 (3.88) | 0.003 | 0.96 |
图2音乐训练组和控制组被试在Go/No-go任务Fz点上(a) Go和No-go条件N2波形图; (b) Go和No-go条件N2地形图; (c) N2差异波的波形图(No-go减Go条件); (d) N2差异波的地形图(No-go减Go条件)。
图2音乐训练组和控制组被试在Go/No-go任务Fz点上(a) Go和No-go条件N2波形图; (b) Go和No-go条件N2地形图; (c) N2差异波的波形图(No-go减Go条件); (d) N2差异波的地形图(No-go减Go条件)。
图3音乐训练组和控制组被试在Go/No-go任务Cz点上 (a) Go和No-go条件P3波形图; (b) Go和No-go条件P3地形图; (c) P3差异波的波形图(No-go减Go条件); (d ) P3差异波的地形图(No-go减Go条件)。
图3音乐训练组和控制组被试在Go/No-go任务Cz点上 (a) Go和No-go条件P3波形图; (b) Go和No-go条件P3地形图; (c) P3差异波的波形图(No-go减Go条件); (d ) P3差异波的地形图(No-go减Go条件)。
图4音乐训练组和控制组被试在Stroop任务FCz点上 (a) 一致和不一致条件N450波形图; (b) 一致和不一致条件N450地形图; (c) N450差异波的波形图(不一致减一致); (d ) N450差异波的地形图(不一致减一致)。
图4音乐训练组和控制组被试在Stroop任务FCz点上 (a) 一致和不一致条件N450波形图; (b) 一致和不一致条件N450地形图; (c) N450差异波的波形图(不一致减一致); (d ) N450差异波的地形图(不一致减一致)。
图5音乐训练组和控制组被试在Stroop任务Pz点上 (a) 一致和不一致条件SP波形图; (b) 一致和不一致条件SP地形图; (c) SP差异波的波形图(不一致减一致); (d ) SP差异波的地形图(不一致减一致)。
图5音乐训练组和控制组被试在Stroop任务Pz点上 (a) 一致和不一致条件SP波形图; (b) 一致和不一致条件SP地形图; (c) SP差异波的波形图(不一致减一致); (d ) SP差异波的地形图(不一致减一致)。
参考文献 51
[1] | Arthur W., & Day D. V. (1994). Development of a short form for the raven advanced progressive matrices test. Educational & Psychological Measurement, 54(2), 394-403. |
[2] | Badzakova-Trajkov G., Barnett K. J., Waldie K. E., & Kirk I. J. (2009). An ERP investigation of the Stroop task: The role of the cingulate in attentional allocation and conflict resolution. Brain Research, 1253, 139-148. doi: 10.1016/j.brainres.2008.11.069URLpmid: 19084509 |
[3] | Baumeister S., Hohmann S., Wolf I., Plichta M. M., Rechtsteiner S., Zangl M., ... Brandeis D. (2014). Sequential inhibitory control processes assessed through simultaneous EEG-fMRI. NeuroImage, 94, 349-359. doi: 10.1016/j.neuroimage.2014.01.023URL |
[4] | Bialystok E., & Depape A.-M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 565-574. doi: 10.1037/a0012735URLpmid: 19331508 |
[5] | Buckner R. L., Andrews-Hanna J. R., & Schacter D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1-38. doi: 10.1196/annals.1440.011URLpmid: 18400922 |
[6] | Carter C. S., & van Veen V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive Affective & Behavioral Neuroscience, 7(4), 367-379. |
[7] | Chen J., Liu L., Wang R., & Shen H. Z. (2017). The effect of musical training on executive functions. Advances in Psychological Science, 25(11), 1854-1864. doi: 10.3724/SP.J.1042.2017.01854URL |
[ 陈杰, 刘雷, 王蓉, 沈海洲. (2017). 音乐训练对执行功能的影响. 心理科学进展, 25(11), 1854-1864.] | |
[8] | Cheng K. S., Chang Y. F., Han R. P. S., & Lee P. F. (2017). Enhanced conflict monitoring via a short-duration, video-assisted deep breathing in healthy young adults: An event-related potential approach through the Go/NoGo paradigm. Peer J, 5, e3857. doi: 10.7717/peerj.3857URLpmid: 29018605 |
[9] | Corrigall K. A., Schellenberg E. G., & Misura N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4, 222. doi: 10.3389/fpsyg.2013.00222URLpmid: 23641225 |
[10] | Di Russo F., Taddei F., Apnile T., & Spinelli D. (2006). Neural correlates of fast stimulus discrimination and response selection in top-level fencers. Neuroscience Letters, 408(2), 113-118. doi: 10.1016/j.neulet.2006.08.085URLpmid: 17018246 |
[11] | Diamond A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135-168. doi: 10.1146/annurev-psych-113011-143750URL |
[12] | Donkers F. C. L., & van Boxtel G. J. M. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56(2), 165-176. doi: 10.1016/j.bandc.2004.04.005URL |
[13] | Enriquez-Geppert S., Konrad C., Pantev C., & Huster R. J. (2010). Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. NeuroImage, 51(2), 877-887. doi: 10.1016/j.neuroimage.2010.02.043URL |
[14] | Fauvel B., Groussard M., Chételat G., Fouquet M., Landeau B., Eustache F., ... Platel H. (2014). Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest. NeuroImage, 90, 179-188. doi: 10.1016/j.neuroimage.2013.12.065URL |
[15] | Gajewski P. D., & Falkenstein M. (2015). Long-term habitual physical activity is associated with lower distractibility in a Stroop interference task in aging: Behavioral and ERP evidence. Brain and Cognition, 98, 87-101. doi: 10.1016/j.bandc.2015.06.004URLpmid: 26160263 |
[16] | Gao Q. F., Jia G., Zhao J., & Zhang D. D. (2019). Inhibitory Control in Excessive Social Networking Users: Evidence From an Event-Related Potential-Based Go-Nogo Task. Frontiers in Psychology, 10, 1810. doi: 10.3389/fpsyg.2019.01810URLpmid: 31447743 |
[17] | Guan M., Liao Y., Ren H., Wang X., Yang Q., Liu X., & Wang W. (2015). Impaired response inhibition in juvenile delinquents with antisocial personality characteristics: A preliminary ERP study in a Go/Nogo task. Neuroscience Letters, 603, 1-5. doi: 10.1016/j.neulet.2015.06.062URLpmid: 26189594 |
[18] | Holmes A. J., & Pizzagalli D. A. (2008). Response conflict and frontocingulate dysfunction in unmedicated participants with major depression. Neuropsychologia, 46(12), 2904-2913. doi: 10.1016/j.neuropsychologia.2008.05.028URL |
[19] | James C. E., Oechslin M. S., van de Ville D., Hauert C. A., Descloux C., & Lazeyras F. (2014). Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Structure and Function, 219(1), 353-366. doi: 10.1007/s00429-013-0504-zURLpmid: 23408267 |
[20] | Jaschke A. C., Honing H., & Scherder E. J. A. (2018). Longitudinal Analysis of Music Education on Executive Functions in Primary School Children. Frontiers in Neuroscience, 12, 103. doi: 10.3389/fnins.2018.00103URLpmid: 29541017 |
[21] | Jonkman L. M. (2006). The development of preparation, conflict monitoring and inhibition from early childhood to young adulthood; a Go/Nogo ERP study. Brain Research, 1097(1), 181-193. doi: 10.1016/j.brainres.2006.04.064URLpmid: 16729977 |
[22] | Joret M.-E., Germeys F., & Gidron Y. (2016). Cognitive inhibitory control in children following early childhood music education. Musicae Scientiae, 21(3), 303-315. doi: 10.1177/1029864916655477URL |
[23] | Lansbergen M. M., van Hell E., & Kenemans J. L. (2007). Impulsivity and conflict in the Stroop task: An ERP study. Journal of Psychophysiology, 21(1), 33-50. doi: 10.1027/0269-8803.21.1.33URL |
[24] | Larson M. J., Clayson P. E., & Clawson A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93(3), 283-297. doi: 10.1016/j.ijpsycho.2014.06.007URLpmid: 24950132 |
[25] | Larson M. J., Kaufman D. A. S., & Perlstein W. M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47(3), 663-670. doi: 10.1016/j.neuropsychologia.2008.11.013URLpmid: 19071142 |
[26] | Li C. S., Morgan P. T., Matuskey D., Abdelghany O., Luo X., Chang J. L., ... Malison R. (2010). Biological markers of the effects of intravenous methylphenidate on improving inhibitory control in cocaine-dependent patients. Proceedings of the National Academy of Sciences, USA, 107 (32), 14455-14459. doi: 10.1073/pnas.1002467107URL |
[27] | Liu P. D., Yang W. J., Tian X., & Chen A.T. (2017). An overview of current studies about the conflict adaptation effect. Advances in Psychological Science, 20(4), 532-541. doi: 10.3724/SP.J.1042.2012.00532URL |
[ 刘培朵, 杨文静, 田夏, 陈安涛. (2012). 冲突适应效应研究述评. 心理科学进展, 20(4), 532-541] | |
[28] | MacLeod C. M. (1991). Half a century of research on the stroop effect: An integrative review. Psychological Bulletin, 109(2), 163-203. doi: 10.1037/0033-2909.109.2.163URLpmid: 2034749 |
[29] | McNeely H. E., West R., Christensen B. K., & Alain C. (2003). Neurophysiological evidence for disturbances of conflict processing in patients with schizophrenia. Journal of Abnormal Psychology, 112(4), 679-688. doi: 10.1037/0021-843X.112.4.679URLpmid: 14674879 |
[30] | Moreno S., Bialystok E., Barac R., Schellenberg E. G., Cepeda N. J., & Chau T. (2011). Short-Term Music Training Enhances Verbal Intelligence and Executive Function. Psychological Science, 22(11), 1425-1433. doi: 10.1177/0956797611416999URLpmid: 21969312 |
[31] | Moreno S., Wodniecka Z., Tays W., Alain C., & Bialystok E. (2014). Inhibitory control in bilinguals and musicians: Event related potential (ERP) evidence for experience- specific effects. PLOS ONE, 9(4), e94169. doi: 10.1371/journal.pone.0094169URLpmid: 24743321 |
[32] | Munakata Y., Herd S. A., Chatham C. H., Depue B. E., Banich M. T., & O'Reilly R. C. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences, 15(10), 453-459. doi: 10.1016/j.tics.2011.07.011URLpmid: 21889391 |
[33] | Nieuwenhuis S., Yeung N., van den Wildenberg W., & Ridderinkhof K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 17-26. |
[34] | Okada B. M. (2016). Musical training and executive functions (Unpublised master’s thesis). University of Maryland, College Park. |
[35] | Okada B. M., & Slevc L. R. (2017). Music training: Contributions to executive function. In M. F. Bunting, J. M. Novick, M. R. Dougherty, & R. W. Engle (Eds.), An integrative approach to cognitive and working memory training: Perspectives from psychology, neuroscience, and human development (pp. 1-16). New York, NY: Oxford University Press. |
[36] | Pandey A. K., Kamarajan C., Tang Y., Chorlian D. B., Roopesh B. N., Manz N., ... Porjesz B. (2012). Neurocognitive deficits in male alcoholics: An ERP/ sLORETA analysis of the N2 component in an equal probability Go/NoGo task. Biological Psychology, 89(1), 170-182. doi: 10.1016/j.biopsycho.2011.10.009URLpmid: 22024409 |
[37] | Pliszka S. R., Liotti M., Bailey B. Y., Perez III R., Glahn D., & Semrud-Clikeman M. (2007). Electrophysiological effects of stimulant treatment on inhibitory control in children with attention-deficit/hyperactivity disorder. Journal of Child & Adolescent Psychopharmacology, 17(3), 356-366. doi: 10.1089/cap.2006.0081URLpmid: 17630869 |
[38] | Sachs M., Kaplan J., der Sarkissian A., & Habibi A. (2017). Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task. PLOS ONE, 12(10), e0187254. doi: 10.1371/journal.pone.0187254URLpmid: 29084283 |
[39] | Seinfeld S., Figueroa H., Ortiz-Gil J., & Sanchez-Vives M. V. (2013). Effects of music learning and piano practice on cognitive function, mood and quality of life in older adults. Frontiers in Psychology, 4, 810. doi: 10.3389/fpsyg.2013.00810URLpmid: 24198804 |
[40] | Simmonds D. J., Pekar J. J., & Mostofsky S. H. (2008). Meta-analysis of Go/No-go tasks, demonstrating that fMRI activation associated with response inhibition is task- dependent. Neuropsychologia, 46(1), 224-232. doi: 10.1016/j.neuropsychologia.2007.07.015URLpmid: 17850833 |
[41] | Slevc L. R., Davey N. S., Buschkuehl M., & Jaeggi S. M. (2016). Tuning the mind: Exploring the connections between musical ability and executive functions. Cognition, 152, 199-211. doi: 10.1016/j.cognition.2016.03.017URLpmid: 27107499 |
[42] | Smith J. L., Jamadar S., Provost A. L., & Michie P. T. (2013). Motor and non-motor inhibition in the Go/NoGo task: An ERP and fMRI study. International Journal of Psychophysiology, 87(3), 244-253. doi: 10.1016/j.ijpsycho.2012.07.185URLpmid: 22885679 |
[43] | Smith J. L., Johnstone S. J., & Barry R. J. (2008). Movement-related potentials in the Go/NoGo task: The P3 reflects both cognitive and motor inhibition. Clinical Neurophysiology, 119(3), 704-714. doi: 10.1016/j.clinph.2007.11.042URLpmid: 18164657 |
[44] | Smith J. L., Smith E. A., Provost A. L., & Heathcote A. (2010). Sequence effects support the conflict theory of N2 and P3 in the Go/NoGo task. International Journal of Psychophysiology, 75(3), 217-226. doi: 10.1016/j.ijpsycho.2009.11.002URLpmid: 19951723 |
[45] | Travis F., Harung H. S., & Lagrosen Y. (2011). Moral development, executive functioning, peak experiences and brain patterns in professional and amateur classical musicians: Interpreted in light of a Unified Theory of Performance. Consciousness and Cognition, 20(4), 1256-1264. doi: 10.1016/j.concog.2011.03.020URLpmid: 21507681 |
[46] | West R. (2004). The effects of aging on controlled attention and conflict processing in the Stroop task. Journal of Cognitive Neuroscience, 16(1), 103-113. doi: 10.1162/089892904322755593URLpmid: 15006040 |
[47] | West R., & Alain C. (2000a). Effects of task context and fluctuations of attention on neural activity supporting performance of the stroop task. Brain Research, 873(1), 102-111. doi: 10.1016/s0006-8993(00)02530-0URLpmid: 10915815 |
[48] | West R., & Alain C. (2000b). Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37(2), 179-189. URLpmid: 10731768 |
[49] | West R., Jakubek K., Wymbs N., Perry M., & Moore K. (2005). Neural correlates of conflict processing. Experimental Brain Research, 167(1), 38-48. doi: 10.1007/s00221-005-2366-yURLpmid: 16082533 |
[50] | Zhang Z. H., Han M., Zhang F., & Li W.J. (2020). Musical training improves rhythm integrative processing of classical Chinese poem. Acta Psychologica Sinica, 52(7), 847-860. |
[ 张政华, 韩梅, 张放, 李卫君. (2020). 音乐训练促进诗句韵律整合加工的神经过程. 心理学报, 52(7), 847-860.] | |
[51] | Zuk J., Benjamin C., Kenyon A., & Gaab N. (2014). Behavioral and neural correlates of executive functioning in musicians and non-musicians. PLOS ONE, 9(6), e99868. doi: 10.1371/journal.pone.0099868URLpmid: 24937544 |
相关文章 15
[1] | 张政华, 韩梅, 张放, 李卫君. 音乐训练促进诗句韵律整合加工的神经过程[J]. 心理学报, 2020, 52(7): 847-860. |
[2] | 张环, 侯双, 王海曼, 廉宇煊, 杨海波. 他人在场条件下的社会分享型提取诱发遗忘[J]. 心理学报, 2020, 52(6): 716-729. |
[3] | 姚尧,陈晓湘. 音乐训练对4~5岁幼儿普通话声调范畴感知能力的影响[J]. 心理学报, 2020, 52(4): 456-468. |
[4] | 王元, 李柯, 盖笑松, 曹逸飞. 基于即时反馈的反应抑制训练对青少年和成人执行功能的训练效应和迁移效应[J]. 心理学报, 2020, 52(10): 1212-1223. |
[5] | 王慧慧, 罗玉丹, 石冰, 余凤琼, 汪凯. 经颅直流电刺激对健康大学生反应抑制的影响[J]. 心理学报, 2018, 50(6): 647-654. |
[6] | 杨伟星, 张堂正, 李红霞, 张佳佳, 司继伟. 数学困难儿童估算策略运用的 中央执行负荷效应[J]. 心理学报, 2018, 50(5): 504-516. |
[7] | 江荣焕, 李晓东. 比例推理的过度使用及其认知机制: 一项发展性的负启动研究[J]. 心理学报, 2017, 49(6): 745-758. |
[8] | 刘豫;陈红;李书慧;罗念. 在线抑制控制训练对失败的限制性饮食者不健康食物选择的改善[J]. 心理学报, 2017, 49(2): 219-227. |
[9] | 刘英杰;郭春彦;魏萍. 知觉负载影响注意选择和冲突解决的系列效应[J]. 心理学报, 2014, 46(9): 1271-1280. |
[10] | 蒋军;向玲;张庆林;陈安涛. 冲突适应独立于意识:来自行为和ERP的证据[J]. 心理学报, 2014, 46(5): 581-592. |
[11] | 杨文静;刘培朵;崔茜;郝鑫;肖宵;张庆林. 自我参照对情绪性记忆定向遗忘的影响[J]. 心理学报, 2014, 46(2): 156-164. |
[12] | 李富洪,曹碧华,肖风,李红. 抑制控制在极小概率目标搜索任务中的作用[J]. 心理学报, 2011, 43(05): 509-518. |
[13] | 余凤琼,袁加锦,罗跃嘉. 情绪干扰听觉反应冲突的ERP研究[J]. 心理学报, 2009, 41(07): 594-601. |
[14] | 马晓清,冯廷勇,李宇,李红,. 从知觉分心任务看儿童类比推理能力的发展[J]. 心理学报, 2008, 40(09): 987-993. |
[15] | 梅磊磊,李燕芳,龙柚杉,陈传升,董奇. 材料呈现方式对不同音乐训练经验的汉语儿童英语言语记忆的影响[J]. 心理学报, 2008, 40(08): 883-889. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4838