删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

左侧眶额皮层在自动情绪调节下注意选择中的作用:来自经颅直流电刺激的证据

本站小编 Free考研考试/2022-01-01

华艳, 李明霞, 王巧婷, 冯彩霞, 张晶()
中国人民大学心理学系, 北京 100872
收稿日期:2019-06-25出版日期:2020-09-25发布日期:2020-07-24
通讯作者:张晶E-mail:psymoon@126.com

基金资助:* 国家社会科学基金重大项目“文化比较视域下中西思维方式差异性研究”研究成果(19ZDA021)

The role of left orbitofrontal cortex in selective attention during automatic emotion regulation: Evidence from transcranial direct current stimulation

HUA Yan, LI Mingxia, WANG Qiaoting, FENG Caixia, ZHANG Jing()
Department of Psychology, Renmin University of China, Beijing 100872, China
Received:2019-06-25Online:2020-09-25Published:2020-07-24
Contact:ZHANG Jing E-mail:psymoon@126.com






摘要/Abstract


摘要: 前人研究表明自动情绪调节能够自上而下地影响情绪及情绪性注意过程。近来有研究提示自动情绪调节与眶额皮层(orbitofrontal cortex, OFC)有关。也有研究表明左侧OFC的激活影响负性注意偏向。本研究采用经颅直流电刺激技术, 考察阈下启动情绪控制目标条件下, 抑制左侧眶额皮层兴奋性是否影响负性注意偏向。结果发现, 使用阴极刺激抑制左侧OFC活动可以加快被试对与恐惧刺激位置一致的探测点的反应。该结果提示左侧眶额皮层是自动情绪调节下情绪性注意选择相关的重要脑区。



图1经颅直流电刺激实验流程
图1经颅直流电刺激实验流程



图2情绪控制目标阈下启动的点探测任务单个试次流程(A); 启动词辨识任务流程(B)
图2情绪控制目标阈下启动的点探测任务单个试次流程(A); 启动词辨识任务流程(B)


表1各实验条件下的反应时(ms, M ± SD)
刺激类型 前测反应时 后测反应时
一致条件 不一致条件 一致条件 不一致条件
假刺激 429.52 ± 49.27 422.58 ± 49.49 412.30 ± 46.69 402.30 ± 38.08
阴极刺激 436.11 ± 44.71 428.87 ± 42.63 405.07 ± 30.43 411.93 ± 36.85

表1各实验条件下的反应时(ms, M ± SD)
刺激类型 前测反应时 后测反应时
一致条件 不一致条件 一致条件 不一致条件
假刺激 429.52 ± 49.27 422.58 ± 49.49 412.30 ± 46.69 402.30 ± 38.08
阴极刺激 436.11 ± 44.71 428.87 ± 42.63 405.07 ± 30.43 411.93 ± 36.85



图3tDCS刺激(阴极刺激, 假刺激) × 前后测(刺激前, 刺激后) × 刺激与探测点位置一致性(一致, 不一致)各实验处理水平下, 被试判断探测点位置的反应时(* ps < 0.05)
图3tDCS刺激(阴极刺激, 假刺激) × 前后测(刺激前, 刺激后) × 刺激与探测点位置一致性(一致, 不一致)各实验处理水平下, 被试判断探测点位置的反应时(* ps < 0.05)







[1] Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303-312.
doi: 10.1093/scan/nsm029URLpmid: 18985136
[2] Bargh, J. A., & Williams, L. E. (2007). The nonconscious regulation of emotion. Journal of Asthma Research, 9(4), 429-445.
[3] Blakemore, R. L., Neveu, R., & Vuilleumier, P. (2017). How emotion context modulates unconscious goal activation during motor force exertion. NeuroImage, 146, 904-917.
doi: 10.1016/j.neuroimage.2016.11.002URLpmid: 27833013
[4] Boggio, P. S., Zaghi, S., & Fregni, F. (2009). Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia, 47(1), 212-217.
doi: 10.1016/j.neuropsychologia.2008.07.022URL
[5] Brasel, S. A., & Gips, J. (2011). Media multitasking behavior: Concurrent television and computer usage. Cyberpsychology Behavior & Social Networking, 14(9), 527-534.
[6] Brody, A. L., Saxena, S., Mandelkern, M. A., Fairbanks, L. A., Ho, M. L., & Baxter, L. R. (2001). Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biological Psychiatry, 50(3), 171-178.
doi: 10.1016/S0006-3223(01)01117-9URL
[7] Brooks, S. J., O’daly, O. G., Uher, R., Schioth, H. B., Treasure, J., & Campbell, I. C. (2012). Subliminal food images compromise superior working memory performance in women with restricting anorexia nervosa. Consciousness and Cognition, 21(2), 751-763.
doi: 10.1016/j.concog.2012.02.006URL
[8] Cisler, J. M., & Koster, E. H. W. (2010). Mechanisms of attentional biases towards threat in anxiety disorders: An Integrative review. Clinical Psychology Review, 30(2), 203-216.
doi: 10.1016/j.cpr.2009.11.003URL
[9] Civai, C., Miniussi, C., & Rumiati, R. I. (2015). Medial prefrontal cortex reacts to unfairness if this damages the self: A tDCS study. Social Cognitive and Affective Neuroscience, 10(8), 1054-1060.
doi: 10.1093/scan/nsu154URLpmid: 25552567
[10] Coffman, B. A., Clark, V. P., & Parasuraman, R. (2014). Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage, 85(2), 895-908.
doi: 10.1016/j.neuroimage.2013.07.083URL
[11] Cooch, N. K., Stalnaker, T. A., Wied, H. M., Bali-Chaudhary, S., Mcdannald, M. A., Liu, T. L., & Schoenbaum, G. (2015). Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons. Nature Communications, 6(1), 7195.
doi: 10.1038/ncomms8195URL
[12] de Almeida, J. R. C., Versace, A., Mechelli, A., Hassel, S., Quevedo, K., Kupfer, D. J., & Phillips, M. L. (2009). Abnormal amygdala-prefrontal effective connectivity to happy faces differentiates bipolar from major depression. Biological Psychiatry, 66(5), 451-459.
doi: 10.1016/j.biopsych.2009.03.024URLpmid: 19450794
[13] Fettes, P., Schulze, L., & Downar, J. (2017). Cortico- striatal-thalamic loop circuits of the orbitofrontal cortex: promising therapeutic targets in psychiatric illness. Frontiers in Systems Neuroscience, 11, 25.
doi: 10.3389/fnsys.2017.00025URLpmid: 28496402
[14] Gan, T., Li, W. Q., Tang, H. H., Lu, X. P., Li, X. L., Liu, C., & Luo, Y. J. (2013). Exciting the right temporo-parietal junction with transcranial direct current stimulation influences moral intention processing. Acta Psychologica Sinica, 45(9), 1004-1014.
doi: 10.3724/SP.J.1041.2013.01004URL
[ 甘甜, 李万清, 唐红红, 陆夏平, 李小俚, 刘超, 罗跃嘉. (2013). 经颅直流电刺激右侧颞顶联合区对道德意图加工的影响. 心理学报, 45(9), 1004-1014.]
[15] Guan, J., L, W. R., & Zhao, X. D. (2018). The competition between inhibition of return and emotional attention bias: Evidence from eye movements. Journal of Psychological Science. 41(6), 1353-1358.
[ 关荐, 李文瑞, 赵旭东. (2018). 返回抑制和情绪信息注意偏向的竞争:来自眼动的证据. 心理科学, 41(6), 1353-1358.]
[16] Guillory, S. A., & Bujarski, K. A. (2014). Exploring emotions using invasive methods: Review of 60 years of human intracranial electrophysiology. Social Cognitive & Affective Neuroscience, 9(12), 1880-1889.
doi: 10.1093/scan/nsu002URLpmid: 24509492
[17] Hartikainen, K. M., Ogawa, K. H., & Knight, R. T. (2012). Orbitofrontal cortex biases attention to emotional events. Journal of Clinical and Experimental Neuropsychology, 34(6), 588-597.
doi: 10.1080/13803395.2012.666231URL
[18] Homan, R.W., Herman, J., Purdy, P. (1987). Cerebral location of international 10-20 system electrode placement, Localisation cérébrale des électrodes placées selon le système international 10-20. Electroencephalography and Clinical Neurophysiology, 66(4), 376-382.
doi: 10.1016/0013-4694(87)90206-9URLpmid: 2435517
[19] , Jacobson, L., Koslowsky, M. & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: A meta- analytical review. Experimental Brain Research, 216(1), 1-10.
doi: 10.1007/s00221-011-2891-9URL
[20] Karremans, J. C., Stroebe, W., & Claus, J. (2006). Beyond Vicary's fantasies: The impact of subliminal priming and brand choice. Journal of Experimental Social Psychology, 42(6), 792-798.
doi: 10.1016/j.jesp.2005.12.002URL
[21] Keeser, D., Meindl, T., Bor, J., Palm, U., Pogarell, O., Mulert, C., … Padberg, F. (2011). Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. Journal of Neuroscience, 31(43), 15284-15293.
doi: 10.1523/JNEUROSCI.0542-11.2011URL
[22] Klorman, R., Weerts, T. C., Hastings, J. E., Melamed, B. G., & Lang, P. J. (1974). Psychometric description of some specific- fear questionnaires. Behavior Therapy, 5(3), 401-409.
doi: 10.1016/S0005-7894(74)80008-0URL
[23] Légal, J.-B., Chappé, J., Coiffard, V., & Villard-Forest, A. (2012). Don't you know that you want to trust me? Subliminal goal priming and persuasion. Journal of Experimental Social Psychology, 48(1), 358-360.
doi: 10.1016/j.jesp.2011.06.006URL
[24] Li, W., & Qian, M. (1995). Revision of the state-trait anxiety inventory with sample of Chinese college students. Acta Scientiarum Naturalium Universitatis Pekinensis, 30(1), 108-115.
[ 李文利, 钱铭怡. (1995). 状态特质焦虑量表中国大学生常模修订. 北京大学学报(自然科学版), 30(1), 108-115.]
[25] Li, Y., Sescousse, G., Amiez, C., & Dreher, J. (2015). Local morphology predicts functional organization of experienced value signals in the human orbitofrontal cortex. Journal of Neuroscience, 35(4), 1648-1658.
doi: 10.1523/JNEUROSCI.3058-14.2015URLpmid: 25632140
[26] Liu, K., Zhang, J., & Zhao, Y. J. (2016). Effect of subliminal emotion control target on attention distribution of fear stimulation. Journal of Psychological Science, 39(6), 1339-1345.
[ 刘珂, 张晶, 赵怡佳. (2016). 阈下启动情绪控制目标对恐惧刺激注意分配的影响. 心理科学, 39(6), 1339-1345.]
[27] M?ki-Marttunen, V., Kuusinen, V., Per?kyl?, J., Ogawa, K. H., Brause, M., Brander, A., & Hartikainen, K. M. (2017). Greater attention to task-relevant threat due to orbitofrontal lesion. Journal of Neurotrauma, 34(2), 400-413.
doi: 10.1089/neu.2015.4390URLpmid: 27502875
[28] Mauss, I. B., Bunge, S. A., & Gross, J. J. (2010). Automatic emotion regulation. Social & Personality Psychology Compass, 1(1), 146-167.
[29] Mauss, I. B., Cook, C. L., & Gross, J. J. (2007). Automatic emotion regulation during anger provocation. Journal of Experimental Social Psychology, 43(5), 698-711.
doi: 10.1016/j.jesp.2006.07.003URL
[30] Mauss, I. B., Evers, C., Wilhelm, F. H., & Gross, J. J. (2006). How to bite your tongue without blowing your top: Implicit evaluation of emotion regulation predicts affective responding to anger provocation. Personality and Social Psychology Bulletin, 32(5), 589-602.
doi: 10.1177/0146167205283841URLpmid: 16702153
[31] Mayberg, H. S., Lozano, A. M., Voon, V., Mcneely, H. E., Seminowicz, D. A., Hamani, C., ... Kennedy, S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45(5), 651-660.
doi: 10.1016/j.neuron.2005.02.014URLpmid: 15748841
[32] Moskowitz, G. B., Li, P. Z., & Kirk, E. R. (2004). The implicit volition model: On the preconscious regulation of temporarily adopted goals. Advances in Experimental Social Psychology, 36(4), 317-413.
[33] Nejati, V., Salehinejad, M. A., & Nitsche, M. A. (2017). Interaction of the left dorsolateral prefrontal cortex (L-dlPFC) and right orbitofrontal cortex (OFC) in hot and cold executive functions: Evidence from transcranial direct current stimulation (tDCS). Neuroscience, 369, 109-123.
doi: 10.1016/j.neuroscience.2017.10.042URLpmid: 29113929
[34] Nejati, V., Salehinejad, M. A., Nitsche, M. A., Najian, A., & Javadi, A. H. (2017). Transcranial direct current stimulation improves executive dysfunctions in ADHD: Implications for inhibitory control, interference control, working memory, and cognitive flexibility. Journal of Attention Disorders, 108705471773061.
[35] Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633-639.
doi: 10.1111/tjp.2000.527.issue-3URL
[36] Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-1901.
doi: 10.1212/wnl.57.10.1899URLpmid: 11723286
[37] Nogueira, R., Abolafia, J. M., Drugowitsch, J., Balaguer-Ballester, E., Sanchez-Vives, M. V., & Moreno-Bote, R. (2017). Lateral orbitofrontal cortex anticipates choices and integrates prior with current information. Nature Communications, 8, 14823.
doi: 10.1038/ncomms14823URLpmid: 28337990
[38] Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 833-857.
doi: 10.1038/mp.2008.65URL
[39] Pourtois, G., Schwartz, S., Seghier, M. L., Lazeyras, F., & Vuilleumier, P. (2006). Neural systems for orienting attention to the location of threat signals: An event-related fMRI study. Neuroimage, 31(2), 920-933.
doi: 10.1016/j.neuroimage.2005.12.034URLpmid: 16487729
[40] Raio, C. M., Orederu, T. A., Palazzolo, L., Shurick, A. A., & Phelps, E. A. (2013). Cognitive emotion regulation fails the stress test. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 151391-5144.
[41] Rao, V. R., Sellers, K. K., Wallace, D. L., Lee, M. B., Bijanzadeh, M., Sani, O. G., ... Chang, E. F. (2018). Direct electrical stimulation of lateral orbitofrontal cortex acutely improves mood in individuals with symptoms of depression. Current Biology, 28(24), 3893-3902.e4.
doi: 10.1016/j.cub.2018.10.026URLpmid: 30503621
[42] Rich, E. L., & Wallis, J. D. (2016). Decoding subjective decisions from orbitofrontal cortex. Nature Neuroscience, 19(7), 973-980.
doi: 10.1038/nn.4320URLpmid: 27273768
[43] Rolls, E. T. (2000). On the brain and emotion. Behavioral & Brain Sciences, 23(2), 219-228.
[44] Rolls, E. T., & Grabenhorst, F. (2008). The orbitofrontal cortex and beyond: From affect to decision-making. Progress in Neurobiology, 86(3), 216-244.
doi: 10.1016/j.pneurobio.2008.09.001URLpmid: 18824074
[45] Rudebeck, P. H., & Murray, E. A. (2011). Balkanizing the primate orbitofrontal cortex: Distinct subregions for comparing and contrasting values. Annals of the New York Academy of Sciences, 1239(1), 1-13.
doi: 10.1111/nyas.2011.1239.issue-1URL
[46] Schutter, D. J. L. G., & van Honk, J. (2006). An electrophysiological link between the cerebellum, cognition and emotion: Frontal theta EEG activity to single-pulse cerebellar TMS. Neuroimage, 33(4), 1227-1231.
doi: 10.1016/j.neuroimage.2006.06.055URLpmid: 17023183
[47] Schwager, S., & Rothermund, K. (2013). Counter-regulation triggered by emotions: Positive/negative affective states elicit opposite valence biases in affective processing. Cognition & Emotion, 27(5), 839-855.
doi: 10.1080/02699931.2012.750599URLpmid: 23237331
[48] Stagg, C. J., & Nitsche, M A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist, 17(1), 37-53.
doi: 10.1177/1073858410386614URLpmid: 21343407
[49] Stein, J. L., Wiedholz, L. M., Bassett, D. S., Weinberger, D. R., Zink, C. F., Mattay, V. S., & Meyer-Lindenberg, A. (2007). A validated network of effective amygdala connectivity. NeuroImage, 36(3), 736-745.
doi: 10.1016/j.neuroimage.2007.03.022URL
[50] Tong, E. M., Tan, D., & Tan, Y. L. (2013). Can implicit appraisal concepts produce emotion-specific effects? A focus on unfairness and anger. Consciousness and Cognition, 22(2), 449-460.
doi: 10.1016/j.concog.2013.02.003URL
[51] Utz, K. S., Dimova, V., Oppenl?nder, K., & Kerkhoff, G. (2010). Electrified minds: Transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology - A review of current data and future implications. Neuropsychologia, 48(10), 2789-2810.
doi: 10.1016/j.neuropsychologia.2010.06.002URL
[52] Vogt, J., Lozo, L., Koster, E. H. W., & de Houwer, J. (2011). On the role of goal relevance in emotional attention: Disgust evokes early attention to cleanliness. Cognition and Emotion, 25(3), 466-477.
doi: 10.1080/02699931.2010.532613URLpmid: 21432687
[53] Wang, J. Y., Jiao, R. K., & Zhang, M. (2016). The mechanism of the effect of task setting on negative compatibility effect: The effect of top-down cognition control on subliminal prime processing. Acta Psychologica Sinica, 48(11), 1370-1378.
doi: 10.3724/SP.J.1041.2016.01370URL
[ 王佳莹, 缴润凯, 张明. (2016). 任务设置影响负相容效应的机制——自上而下认知控制对阈下启动信息加工的影响. 心理学报, 48(11), 1370-1378.]
[54] Waters, A. M., Nitz, A. B., Craske, M. G., & Johnson, C. (2007). The effects of anxiety upon attention allocation to affective stimuli. Behaviour Research and Therapy, 45(4), 763-774.
doi: 10.1016/j.brat.2006.07.002URL
[55] Waugh, C. E., Wager, T. D., Fredrickson, B. L., Noll, D. C., & Taylor, S. F. (2008). The neural correlates of trait resilience when anticipating and recovering from threat. Social Cognitive and Affective Neuroscience, 3(4), 322-332.
doi: 10.1093/scan/nsn024URLpmid: 19015078
[56] Williams, L. E., Bargh, J. A., Nocera, C. C., & Gray, J. R. (2009). The unconscious regulation of emotion: Nonconscious reappraisal goals modulate emotional reactivity. Emotion, 9(6), 847-854.
doi: 10.1037/a0017745URLpmid: 20001127
[57] Willis, M. L., Murphy, J. M., Ridley, N. J., & Vercammen, A. (2015). Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition. Social Cognitive & Affective Neuroscience, 10(12), 1677-1683.
doi: 10.1093/scan/nsv057URLpmid: 25971602
[58] Yang, X. L., Gao, M., Shi, J. C., Ye, H., & Chen, S. (2017). Modulating the activity of the DLPFC and OFC has distinct effects on risk and ambiguity decision-making: A tDCS study. Frontiers in Psychology, 8, 1417.
doi: 10.3389/fpsyg.2017.01417URLpmid: 28878714
[59] Zhang, J., Lipp, O. V., & Hu, P. (2017). Individual differences in automatic emotion regulation interact with primed emotion regulation during an anger provocation. Frontiers in Psychology, 8, 614.
doi: 10.3389/fpsyg.2017.00614URLpmid: 28484412
[60] Zhang, W. H., & Lu, J M. (2012). Time course of automatic emotion regulation during a facial Go/ Nogo task. Biological Psychology, 89(2), 444-449.
doi: 10.1016/j.biopsycho.2011.12.011URL




[1]殷西乐, 李建标, 陈思宇, 刘晓丽, 郝洁. 第三方惩罚的神经机制:来自经颅直流电刺激的证据[J]. 心理学报, 2019, 51(5): 571-583.
[2]张丹丹, 刘珍莉, 陈钰, 买晓琴. 右腹外侧前额叶对高抑郁水平成年人社会情绪调节的作用:一项tDCS研究[J]. 心理学报, 2019, 51(2): 207-2015.
[3]王思思, 库逸轩. 右侧背外侧前额叶在视觉工作记忆中的因果性作用[J]. 心理学报, 2018, 50(7): 727-738.
[4]王慧慧, 罗玉丹, 石冰, 余凤琼, 汪凯. 经颅直流电刺激对健康大学生反应抑制的影响 *[J]. 心理学报, 2018, 50(6): 647-654.
[5]甘甜, 石睿, 刘超, 罗跃嘉. 经颅直流电刺激右侧颞顶联合区 对助人意图加工的影响[J]. 心理学报, 2018, 50(1): 36-46.
[6]罗俊; 叶航;郑昊力;贾拥民;陈姝; 黄达强. 左右侧颞顶联合区对道德意图信息加工能力的共同作用——基于经颅直流电刺激技术[J]. 心理学报, 2017, 49(2): 228-240.
[7]甘甜;李万清;唐红红;陆夏平;李小俚;刘超;罗跃嘉. 经颅直流电刺激右侧颞顶联合区对道德意图加工的影响[J]. 心理学报, 2013, 45(9): 1004-1014.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4791
相关话题/心理 实验 流程 控制 信息