删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

抑郁倾向对合作的影响:双人同步近红外脑成像研究

本站小编 Free考研考试/2022-01-01

张丹丹1,2, 王驹1, 赵君1, 陈淑美1, 黄琰淋3, 高秋凤3()
1 深圳大学心理学院, 深圳 518060
2 深圳市情绪与社会认知科学重点实验室, 深圳 518060
3 深圳大学社会学系, 深圳 518060
收稿日期:2019-07-03出版日期:2020-05-25发布日期:2020-03-26
通讯作者:高秋凤E-mail:gqf_psy@szu.edu.cn

基金资助:* 国家自然科学基金(31970980);深圳市基础研究自由探索项目(JCYJ20180305124305294);深港脑科学创新研究院支持(2019SHIBS 0003)

Impact of depression on cooperation: An fNIRS hyperscanning study

ZHANG Dandan1,2, WANG Ju1, ZHAO Jun1, CHEN Shumei1, Huang Yanlin3, GAO Qiufeng3()
1 College of Psychology, Shenzhen University, Shenzhen 518060, China
2 Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen 518060, China
3 Department of Sociology, Shenzhen University, Shenzhen 518060, China
Received:2019-07-03Online:2020-05-25Published:2020-03-26
Contact:GAO Qiufeng E-mail:gqf_psy@szu.edu.cn






摘要/Abstract


摘要: 抑郁人群不但表现出注意、记忆等个体认知层面的负性偏向, 还伴随有明显的社会认知障碍。已有研究在抑郁对社会认知的影响方面还考察得不多。本研究采用囚徒困境范式考察抑郁倾向对社会合作的影响。结果显示, 高抑郁倾向组比低抑郁倾向组的合作率更低, 双侧背外侧前额叶的激活更弱, 抑郁对右侧背外侧前额叶及眶额叶的脑间同步性有调节作用; 低抑郁被试与低抑郁被试配对时右侧颞顶联合区脑间同步性强于高抑郁被试与高抑郁被试配对, 或者高抑郁被试与低抑郁被试配对时的右侧颞顶联合区脑间同步性, 该效应当且仅当双方的选择相同时显著。结果表明, 抑郁群体在社会奖赏加工、冲突控制及心理理论脑区均存在功能性缺陷, 这些结果为理解抑郁人群合作意愿下降提供了脑成像证据。


表1高、低抑郁倾向被试的人口学特征(M ± SD)
变量 低抑郁倾向 (n = 78) 高抑郁倾向 (n = 78) 统计结果
年龄 20.4 ± 1.4 20.6 ± 1.6 t(154) = -0.72, p = 0.470
性别, 男/女 40/38 39/39 χ2(1) = 0.03, p = 0.873
抑郁自评量表(SDS) 0.41 ± 0.06 0.55 ± 0.08 t(154) = -12.7, p < 0.001
特质焦虑量表(STAI-T) 21.7 ± 3.3 26.0 ± 3.5 t(154) = -1.06, p = 0.291

表1高、低抑郁倾向被试的人口学特征(M ± SD)
变量 低抑郁倾向 (n = 78) 高抑郁倾向 (n = 78) 统计结果
年龄 20.4 ± 1.4 20.6 ± 1.6 t(154) = -0.72, p = 0.470
性别, 男/女 40/38 39/39 χ2(1) = 0.03, p = 0.873
抑郁自评量表(SDS) 0.41 ± 0.06 0.55 ± 0.08 t(154) = -12.7, p < 0.001
特质焦虑量表(STAI-T) 21.7 ± 3.3 26.0 ± 3.5 t(154) = -1.06, p = 0.291



图1实验流程示意图。在图中所示的试次中, 1号被试先于2号被试按键选择, 故1号被试对应的编号先变成红色。
图1实验流程示意图。在图中所示的试次中, 1号被试先于2号被试按键选择, 故1号被试对应的编号先变成红色。



图2NIRS光极的头皮分布(以1号被试为例)。
图2NIRS光极的头皮分布(以1号被试为例)。



图3对方前一次的决策结果对被试当前决策的影响。A, 不同影响模式的出现概率; B, 不同影响模式对应的反应时。本研究关注的4种影响模式为:投桃报李(XCCX)、以德报怨(XDCX)、以牙还牙(XDDX)、恩将仇报(XCDX)。图中errorbar表示均值的标准误。
图3对方前一次的决策结果对被试当前决策的影响。A, 不同影响模式的出现概率; B, 不同影响模式对应的反应时。本研究关注的4种影响模式为:投桃报李(XCCX)、以德报怨(XDCX)、以牙还牙(XDDX)、恩将仇报(XCDX)。图中errorbar表示均值的标准误。



图4单人脑激活强度的条件间差异。A, 抑郁倾向组间效应(高、低抑郁倾向)和决策结果(CC、CD、DC和DD)的交互作用; B, 抑郁倾向组间效应的主效应(高vs. 低抑郁倾向)。图中颜色代表方差分析的F值, 即颜色越红表示该脑区的交互作用或主效应对应的F值越大。
图4单人脑激活强度的条件间差异。A, 抑郁倾向组间效应(高、低抑郁倾向)和决策结果(CC、CD、DC和DD)的交互作用; B, 抑郁倾向组间效应的主效应(高vs. 低抑郁倾向)。图中颜色代表方差分析的F值, 即颜色越红表示该脑区的交互作用或主效应对应的F值越大。



图5不同条件下的脑激活水平(归一化β值)。A, OFC; B, 左侧dlPFC; C, 右侧dlPFC。4个条件为:双人合作CC、本人合作对家不合作CD、本人不合作对家合作DC、双人不合作DD)。图中errorbar表示均值的标准误。
图5不同条件下的脑激活水平(归一化β值)。A, OFC; B, 左侧dlPFC; C, 右侧dlPFC。4个条件为:双人合作CC、本人合作对家不合作CD、本人不合作对家合作DC、双人不合作DD)。图中errorbar表示均值的标准误。



图6不同条件下的脑间同步性。A, OFC; B, 右侧dlPFC; C, 右侧TPJ。抑郁倾向分组:L-L为低-低抑郁倾向组, H-L为高-低抑郁倾向组, H-H为高-高抑郁倾向组。本图中errorbar表示均值的标准误。
图6不同条件下的脑间同步性。A, OFC; B, 右侧dlPFC; C, 右侧TPJ。抑郁倾向分组:L-L为低-低抑郁倾向组, H-L为高-低抑郁倾向组, H-H为高-高抑郁倾向组。本图中errorbar表示均值的标准误。


表2脑区激活(β值)对合作率的预测
分组模型 模型参数 标准化回归系数(B) t值的显著性
(p)
不分组 R2 = 0.032 OFC = -0.064 0.499
(n = 156) F(5,150) = 0.99 TPJ = 0.096 0.275
p = 0.428 mPFC = -0.042 0.723
left dlPFC = -0.094 0.337
right dlPFC = -0.042 0.641
低抑郁倾向 R2 = 0.025 OFC = -0.170 0.335
(n = 78) F(5,72) = 0.365 TPJ = 0.085 0.486
p = 0.871 mPFC = 0.109 0.628
left dlPFC = -0.072 0.649
right dlPFC = -0.003 0.982
高抑郁倾向 R2 = 0.087 OFC = -0.033 0.790
(n = 78) F(5,20) = 1.36 TPJ = 0.191 0.169
p = 0.248 mPFC = -0.153 0.338
left dlPFC = -0.136 0.307
right dlPFC = -0.122 0.337

表2脑区激活(β值)对合作率的预测
分组模型 模型参数 标准化回归系数(B) t值的显著性
(p)
不分组 R2 = 0.032 OFC = -0.064 0.499
(n = 156) F(5,150) = 0.99 TPJ = 0.096 0.275
p = 0.428 mPFC = -0.042 0.723
left dlPFC = -0.094 0.337
right dlPFC = -0.042 0.641
低抑郁倾向 R2 = 0.025 OFC = -0.170 0.335
(n = 78) F(5,72) = 0.365 TPJ = 0.085 0.486
p = 0.871 mPFC = 0.109 0.628
left dlPFC = -0.072 0.649
right dlPFC = -0.003 0.982
高抑郁倾向 R2 = 0.087 OFC = -0.033 0.790
(n = 78) F(5,20) = 1.36 TPJ = 0.191 0.169
p = 0.248 mPFC = -0.153 0.338
left dlPFC = -0.136 0.307
right dlPFC = -0.122 0.337


表3脑间同步性(r值)对互惠合作率(CC%)的预测
分组模型 模型参数 标准化回归系数(B) t值的显著性
(p)
不分组 R2 = 0.267 OFC = 0.327 0.004
(n = 78) F(5,72) = 5.26 TPJ = 0.270 0.020
p < 0.001 mPFC = 0.225 0.087
left dlPFC = 0.365 0.007
right dlPFC = 0.387 0.003
低-低抑郁倾向 R2 = 0.653 OFC = 0.310 0.059
(n = 26) F(5,20) = 7.53 TPJ = 0.440 0.008
p < 0.001 mPFC = 0.038 0.857
left dlPFC = 0.493 0.022
right dlPFC = 0.874 0.000
高-低抑郁倾向 R2 = 0.184 OFC = 0.258 0.285
(n = 26) F(5,20) = 0.90 TPJ = 0.277 0.280
p = 0.499 mPFC = 0.394 0.154
left dlPFC = 0.307 0.279
right dlPFC = 0.060 0.825
高-高抑郁倾向 R2 = 0.376 OFC = 0.405 0.067
(n = 26) F(5,20) = 2.41 TPJ = 0.205 0.345
p = 0.073 mPFC = 0.055 0.812
left dlPFC = 0.266 0.279
right dlPFC = 0.162 0.493

表3脑间同步性(r值)对互惠合作率(CC%)的预测
分组模型 模型参数 标准化回归系数(B) t值的显著性
(p)
不分组 R2 = 0.267 OFC = 0.327 0.004
(n = 78) F(5,72) = 5.26 TPJ = 0.270 0.020
p < 0.001 mPFC = 0.225 0.087
left dlPFC = 0.365 0.007
right dlPFC = 0.387 0.003
低-低抑郁倾向 R2 = 0.653 OFC = 0.310 0.059
(n = 26) F(5,20) = 7.53 TPJ = 0.440 0.008
p < 0.001 mPFC = 0.038 0.857
left dlPFC = 0.493 0.022
right dlPFC = 0.874 0.000
高-低抑郁倾向 R2 = 0.184 OFC = 0.258 0.285
(n = 26) F(5,20) = 0.90 TPJ = 0.277 0.280
p = 0.499 mPFC = 0.394 0.154
left dlPFC = 0.307 0.279
right dlPFC = 0.060 0.825
高-高抑郁倾向 R2 = 0.376 OFC = 0.405 0.067
(n = 26) F(5,20) = 2.41 TPJ = 0.205 0.345
p = 0.073 mPFC = 0.055 0.812
left dlPFC = 0.266 0.279
right dlPFC = 0.162 0.493


附表1近红外通道的空间定位
通道编号 MNI坐标 通道起止 Brodmann模板
(脑区占通道的百分比)*
LPBA40模板
(脑区占通道的百分比)*
1 -34, 63, -8 Fp1-AF7 10 - Frontopolar area (0.70) L middle frontal gyrus (0.74)
2 -12, 71, -5 Fp1-Fpz 10 - Frontopolar area (0.80) L superior frontal gyrus (0.93)
3 -23, 68, 2 Fp1-AF3 10 - Frontopolar area (1) L middle frontal gyrus (0.97)
4 14, 71, -5 Fp2-Fpz 10 - Frontopolar area (0.88) R middle frontal gyrus (1)
5 36, 64, -9 Fp2-AF8 10 - Frontopolar area (0.72) R inferior frontal gyrus (0.62)
6 26, 68, 2 Fp2-AF4 10 - Frontopolar area (1) R middle frontal gyrus (1)
7 -46, 51, 1 F5-AF7 10 - Frontopolar area (0.53) L inferior frontal gyrus (0.92)
8 -41, 55, 16 F5-AF3 10 - Frontopolar area (0.85) L middle frontal gyrus (1)
通道编号 MNI坐标 通道起止 Brodmann模板
(脑区占通道的百分比)*
LPBA40模板
(脑区占通道的百分比)*
9 -48, 35, 25 F5-FFC3 9/46 - Dorsolateral prefrontal cortex (0.86) L middle frontal gyrus (0.60)
10 2, 69, 11 AFz-Fpz 10 - Frontopolar area (1) R superior frontal gyrus (0.74)
11 -15, 66, 23 AFz-AF3 10 - Frontopolar area (1) L middle frontal gyrus (0.50)
12 17, 67, 24 AFz-AF4 10 - Frontopolar area (1) R middle frontal gyrus (0.96)
13 2, 56, 38 AFz-Fz 9 - Dorsolateral prefrontal cortex (0.96) R superior frontal gyrus (0.85)
14 48, 51, 2 F6-AF8 47 - Inferior prefrontal gyrus (0.47) R inferior frontal gyrus (0.96)
15 43, 55, 16 F6-AF4 10 - Frontopolar area (0.93) R middle frontal gyrus (0.65)
16 50, 35, 26 F6-FFC4 9/46 - Dorsolateral prefrontal cortex (0.86) R middle frontal gyrus (0.60)
17 -26, 56, 30 F1-AF3 10 - Frontopolar area (0.54) L middle frontal gyrus (1)
18 -33, 38, 43 F1-FFC3 8 - Includes Frontal eye fields (0.51) L middle frontal gyrus (0.60)
19 -10, 45, 51 F1-Fz 8 - Includes Frontal eye fields (1) L superior frontal gyrus (1)
20 29, 56, 31 F2-AF3 9 - Dorsolateral prefrontal cortex (0.53) R middle frontal gyrus (1)
21 13, 45, 51 F2-Fz 8 - Includes Frontal eye fields (1) R superior frontal gyrus (0.98)
22 35, 38, 44 F2-FFC4 8 - Includes Frontal eye fields (0.57) R middle frontal gyrus (0.72)
23 62, -43, 45 CP4-CP6 40 - Supramarginal gyrus (1) R supramarginal gyrus (0.52)
24 50, -56, 53 CP4-P4 40 - Supramarginal gyrus (1) R angular gyrus (1)
25 69, -43, 10 TP8-CP6 22 - Superior Temporal Gyrus (1) R middle temporal gyrus (0.85)
26 64, -56, 12 TP8-P8 37 - Fusiform gyrus (0.91) R middle temporal gyrus (0.93)
27 62, -56, 29 P6-CP6 40 - Supramarginal gyrus (0.71) R angular gyrus (1)
28 51, -68, 40 P6-P4 39 - Angular gyrus (1) R angular gyrus (1)
29 57, -67, 13 P6-P8 39 - Angular gyrus (0.56) R middle occipital gyrus (0.92)

附表1近红外通道的空间定位
通道编号 MNI坐标 通道起止 Brodmann模板
(脑区占通道的百分比)*
LPBA40模板
(脑区占通道的百分比)*
1 -34, 63, -8 Fp1-AF7 10 - Frontopolar area (0.70) L middle frontal gyrus (0.74)
2 -12, 71, -5 Fp1-Fpz 10 - Frontopolar area (0.80) L superior frontal gyrus (0.93)
3 -23, 68, 2 Fp1-AF3 10 - Frontopolar area (1) L middle frontal gyrus (0.97)
4 14, 71, -5 Fp2-Fpz 10 - Frontopolar area (0.88) R middle frontal gyrus (1)
5 36, 64, -9 Fp2-AF8 10 - Frontopolar area (0.72) R inferior frontal gyrus (0.62)
6 26, 68, 2 Fp2-AF4 10 - Frontopolar area (1) R middle frontal gyrus (1)
7 -46, 51, 1 F5-AF7 10 - Frontopolar area (0.53) L inferior frontal gyrus (0.92)
8 -41, 55, 16 F5-AF3 10 - Frontopolar area (0.85) L middle frontal gyrus (1)
通道编号 MNI坐标 通道起止 Brodmann模板
(脑区占通道的百分比)*
LPBA40模板
(脑区占通道的百分比)*
9 -48, 35, 25 F5-FFC3 9/46 - Dorsolateral prefrontal cortex (0.86) L middle frontal gyrus (0.60)
10 2, 69, 11 AFz-Fpz 10 - Frontopolar area (1) R superior frontal gyrus (0.74)
11 -15, 66, 23 AFz-AF3 10 - Frontopolar area (1) L middle frontal gyrus (0.50)
12 17, 67, 24 AFz-AF4 10 - Frontopolar area (1) R middle frontal gyrus (0.96)
13 2, 56, 38 AFz-Fz 9 - Dorsolateral prefrontal cortex (0.96) R superior frontal gyrus (0.85)
14 48, 51, 2 F6-AF8 47 - Inferior prefrontal gyrus (0.47) R inferior frontal gyrus (0.96)
15 43, 55, 16 F6-AF4 10 - Frontopolar area (0.93) R middle frontal gyrus (0.65)
16 50, 35, 26 F6-FFC4 9/46 - Dorsolateral prefrontal cortex (0.86) R middle frontal gyrus (0.60)
17 -26, 56, 30 F1-AF3 10 - Frontopolar area (0.54) L middle frontal gyrus (1)
18 -33, 38, 43 F1-FFC3 8 - Includes Frontal eye fields (0.51) L middle frontal gyrus (0.60)
19 -10, 45, 51 F1-Fz 8 - Includes Frontal eye fields (1) L superior frontal gyrus (1)
20 29, 56, 31 F2-AF3 9 - Dorsolateral prefrontal cortex (0.53) R middle frontal gyrus (1)
21 13, 45, 51 F2-Fz 8 - Includes Frontal eye fields (1) R superior frontal gyrus (0.98)
22 35, 38, 44 F2-FFC4 8 - Includes Frontal eye fields (0.57) R middle frontal gyrus (0.72)
23 62, -43, 45 CP4-CP6 40 - Supramarginal gyrus (1) R supramarginal gyrus (0.52)
24 50, -56, 53 CP4-P4 40 - Supramarginal gyrus (1) R angular gyrus (1)
25 69, -43, 10 TP8-CP6 22 - Superior Temporal Gyrus (1) R middle temporal gyrus (0.85)
26 64, -56, 12 TP8-P8 37 - Fusiform gyrus (0.91) R middle temporal gyrus (0.93)
27 62, -56, 29 P6-CP6 40 - Supramarginal gyrus (0.71) R angular gyrus (1)
28 51, -68, 40 P6-P4 39 - Angular gyrus (1) R angular gyrus (1)
29 57, -67, 13 P6-P8 39 - Angular gyrus (0.56) R middle occipital gyrus (0.92)







[1] Abe M. O., Koike T., Okazaki S., Sugawara S. K., Takahashi K., Watanabe K., & Sadaro N . (2019). Neural correlates of online cooperation during joint force production. NeuroImage, 191, 150-161.
doi: 10.1016/j.neuroimage.2019.02.003URLpmid: 30739061
[2] Babiloni F., & Astolfi L . (2014). Social neuroscience and hyperscanning techniques: Past, present and future. Neuroscience and Biobehavioral Reviews, 44, 76-93.
doi: 10.1016/j.neubiorev.2012.07.006URLpmid: 22917915
[3] Bird T., Tarsia M., & Schwannauer M . (2018). Interpersonal styles in major and chronic depression: A systematic review and meta-analysis. Journal of Affective Disorders, 239, 93-101.
doi: 10.1016/j.jad.2018.05.057URLpmid: 29990668
[4] Bludau S., Bzdok D., Gruber O., Kohn N., Riedl V., Sorg C., … Eickhoff S. B . (2016). Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitectonically informed voxel-based morphometry. American Journal of Psychiatry, 173(3), 291-298.
doi: 10.1176/appi.ajp.2015.15030349URLpmid: 26621569
[5] Bora E., & Berk M . (2016). Theory of mind in major depressive disorder: A meta-analysis. Journal of Affective Disorders, 191, 49-55.
doi: 10.1016/j.jad.2015.11.023URLpmid: 26655114
[6] Bowles S., & Gintis H . (2011). A cooperative species: Human reciprocity and its evolution Princeton, NJ: Princeton University Press Human reciprocity and its evolution. Princeton, NJ: Princeton University Press.
[7] Camerer C . (2003). Behavioral game theory: Experiments in strategic interaction. Princeton, NJ: Princeton University Press.
[8] Cheng W., Rolls E. T., Qiu J., Liu W., Tang Y., Huang C. C., … Feng J . (2016). Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression. Brain, 139(12), 3296-3309.
doi: 10.1093/brain/aww255URLpmid: 27742666
[9] Cheng W., Rolls E. T., Qiu J., Xie X., Lyu W., Li Y., … Feng J . (2018). Functional connectivity of the human amygdala in health and in depression. Social Cognitive and Affective Neuroscience, 13(6), 557-568.
doi: 10.1093/scan/nsy032URLpmid: 29767786
[10] Cheng X., Li X., & Hu Y . (2015). Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS-based hyperscanning study. Human Brain Mapping, 36(6), 2039-2048.
doi: 10.1002/hbm.22754URLpmid: 25691124
[11] Clark C., Thorne C. B., Hardy S., & Cropsey K. L . (2013). Cooperation and depressive symptoms. Journal of Affective Disorders, 150(3), 1184-1187.
doi: 10.1016/j.jad.2013.05.011URLpmid: 23726777
[12] Cui X., Bryant D. M., & Reiss A. L . (2012). NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage, 59(3), 2430-2437.
doi: 10.1016/j.neuroimage.2011.09.003URLpmid: 21933717
[13] Dai R., Liu R., Li T., Zhang Z., Xiao X., Sun P., … Zhu C . (2018). Holistic cognitive and neural processes: a fNIRS-hyperscanning study on interpersonal sensorimotor synchronization. Social Cognitive and Affective Neuroscience, 13(11), 1141-1154.
doi: 10.1093/scan/nsy090URLpmid: 30321411
[14] Emonds G., Declerck C. H., Boone C., Vandervliet E. J. M., & Parizel P. M . (2012). The cognitive demands on cooperation in social dilemmas: An fMRI study. Social Neuroscience, 7(5), 494-509.
doi: 10.1080/17470919.2012.655426URLpmid: 22293039
[15] Fermin A. S. R., Sakagami M., Kiyonari T., Li Y., Matsumoto Y., & Yamagishi T . (2016). Representation of economic preferences in the structure and function of the amygdala and prefrontal cortex. Scientific Reports, 6, 20982.
doi: 10.1038/srep20982URLpmid: 26876988
[16] Fett A. K., Shergill S. S., Korver-Nieberg N., Yakub F., Gromann P. M., & Krabbendam L . (2016). Learning to trust: trust and attachment in early psychosis. Psychological Medicine, 46(7), 1437-1447.
doi: 10.1017/S0033291716000015URLpmid: 26898947
[17] Frodl T., Bokde A. L., Scheuerecker J., Lisiecka D., Schoepf V., Hampel H., … Meisenzahl E . (2010). Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression. Biological Psychiatry, 67(2), 161-167.
doi: 10.1016/j.biopsych.2009.08.022URLpmid: 19811772
[18] Grabenhorst F., & Rolls E. T . (2011). Value, pleasure and choice in the ventral prefrontal cortex. Trends in Cognitive Sciences, 15(2), 56-67.
doi: 10.1016/j.tics.2010.12.004URLpmid: 21216655
[19] Gradin V. B., Pérez A., Macfarlane J. A., Cavin I., Waiter G., Tone E. B., … Steele J. D . (2016). Neural correlates of social exchanges during the prisoner’s dilemma game in depression. Psychological Medicine, 46(6), 1289-1300.
doi: 10.1017/S0033291715002834URLpmid: 26763141
[20] Grecucci A., Giorgetta C., van’t Wout M., Bonini N., & Sanfey A. G . (2013). Reappraising the ultimatum: An fMRI study of emotion regulation and decision making. Cerebral Cortex, 23(2), 399-410.
doi: 10.1093/cercor/bhs028URLpmid: 22368088
[21] He Z., Zhang D., & Luo Y . (2015). Mood-congruent cognitive bias in depressed individuals. Advances in Psychological Science, 23(12), 2118-2128.
[ 何振宏, 张丹丹, 罗跃嘉 . (2015) 抑郁症人群的心境一致性认知偏向. 心理科学进展, 23(12), 2118-2128.]
[22] Jacobson N. C., Lord K. A., & Newman M. G . (2017). Perceived emotional social support in bereaved spouses mediates the relationship between anxiety and depression. Journal of Affective Disorders, 211, 83-91.
doi: 10.1016/j.jad.2017.01.011URLpmid: 28103522
[23] Jiang J., Chen C., Dai B., Shi G., Ding G., Liu L., & Lu C . (2015). Leader emergence through interpersonal neural synchronization. Proceedings of the National Academy of Sciences of the United States of America, 112(14), 4274-4279.
doi: 10.1073/pnas.1422930112URLpmid: 25831535
[24] Kar S. K . (2019). Predictors of response to repetitive transcranial magnetic stimulation in depression: A review of recent updates. Clinical Psychopharmacology and Neuroscience, 17(1), 25-33.
doi: 10.9758/cpn.2019.17.1.25URLpmid: 30690937
[25] Knoch D., Pascual-Leone A., Meyer K., Treyer V., & Fehr E . (2006). Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science, 314(5800), 829-832.
doi: 10.1126/science.1129156URLpmid: 17023614
[26] Kraus C., Klöbl M., Tik M., Auer B., Vanicek T., Geissberger N., … Lanzenberger R . (2019). The pulvinar nucleus and antidepressant treatment: Dynamic modeling of antidepressant response and remission with ultra-high field functional MRI. Molecular Psychiatry, 24(5), 746-756.
doi: 10.1038/s41380-017-0009-xURLpmid: 29422521
[27] Kringelbach M. L., O'Doherty J., Rolls E. T., & Andrews C . (2003). Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cerebral Cortex, 13(10), 1064-1071.
doi: 10.1093/cercor/13.10.1064URLpmid: 12967923
[28] Kupferberg A., Bicks L., & Hasler G . (2016). Social functioning in major depressive disorder. Neuroscience & Biobehavioral Reviews, 69, 313-332.
doi: 10.1016/j.neubiorev.2016.07.002URLpmid: 27395342
[29] Lancaster J. L., Woldorff M. G., Parsons L. M., Liotti M., Freitas C. S., Rainey L., … Fox P . (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120-131.
doi: 10.1002/1097-0193(200007)10:3&amp;lt;120::aid-hbm30&amp;gt;3.0.co;2-8URLpmid: 10912591
[30] Liu J., Zhang R., Geng B., Zhang T., Yuan D., Otani S., & Li X . (2019). Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. NeuroImage, 193, 93-102.
doi: 10.1016/j.neuroimage.2019.03.004URLpmid: 30851445
[31] Lu K., Xue H., Nozawa T., & Hao N . (2018). Cooperation makes a group be more creative. Cerebral Cortex, 29(8), 3457-3470. doi: 10.1093/cercor/bhy215.[Epub ahead of print]
doi: 10.1093/cercor/bhy215URLpmid: 30192902
[32] Miller E. K., & Cohen J. D . (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.
doi: 10.1146/annurev.neuro.24.1.167URLpmid: 11283309
[33] Molenberghs P., Johnson H., Henry J. D., & Mattingley J. B . (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 65, 276-291.
doi: 10.1016/j.neubiorev.2016.03.020URLpmid: 27073047
[34] Poeppl T. B., Müller V. I., Hoffstaedter F., Bzdok D., Laird A. R., Fox P. T., … Eickhoff S. B . (2016). Imbalance in subregional connectivity of the right temporoparietal junction in major depression. Human Brain Mapping, 37(8), 2931-2942.
doi: 10.1002/hbm.23217URLpmid: 27090056
[35] Pulcu E., Thomas E. J., Trotter P. D., McFarquhar M., Juhasz G., Sahakian B. J., … Elliott R . (2015). Social-economical decision making in current and remitted major depression. Psychological Medicine, 45(6), 1301-1313.
doi: 10.1017/S0033291714002414URLpmid: 25300570
[36] Reindl V., Gerloff C., Scharke W., & Konrad K . (2018). Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage, 178, 493-502.
doi: 10.1016/j.neuroimage.2018.05.060URLpmid: 29807152
[37] Richieri R., Verger A., Boyer L., Boucekine M., David A., Lançon C., … Guedj E . (2018). Predictive value of dorso-lateral prefrontal connectivity for rTMS response in treatment-resistant depression: A brain perfusion SPECT study. Brain Stimulation, 11(5), 1093-1097.
doi: 10.1016/j.brs.2018.05.010URLpmid: 29802071
[38] Rilling J., Gutman D., Zeh T., Pagnoni G., Berns G., & Kilts C . (2002). A neural basis for social cooperation. Neuron, 35(2), 395-405.
doi: 10.1016/s0896-6273(02)00755-9URLpmid: 12160756
[39] Rilling J. K., Glenn A. L., Jairam M. R., Pagnoni G., Goldsmith D. R., Elfenbein H. A., & Lilienfeld S. O . (2007). Neural correlates of social cooperation and non-cooperation as a function of psychopathy. Biological Psychiatry, 61(11), 1260-1271.
doi: 10.1016/j.biopsych.2006.07.021URLpmid: 17046722
[40] Rilling J. K., & Sanfey A. G . (2011). The neuroscience of social decision-making. Annual Review of Psychology, 62, 23-48.
doi: 10.1146/annurev.psych.121208.131647URLpmid: 20822437
[41] Rothkirch M., Tonn J., Köhler S., & Sterzer P . (2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain, 140(4), 1147-1157.
doi: 10.1093/brain/awx025URLpmid: 28334960
[42] Ruff C. C., & Fehr E . (2014). The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience, 15, 549-562.
doi: 10.1038/nrn3776URLpmid: 24986556
[43] Saleh A., Potter G. G., McQuoid D. R., Boyd B., Turner R., MacFall J. R., & Taylor W. D . (2017). Effects of early life stress on depression, cognitive performance and brain morphology. Psychological Medicine, 47(1), 171-181.
doi: 10.1017/S0033291716002403URLpmid: 27682320
[44] Satterthwaite T. D., Cook P. A., Bruce S. E., Conway C., Mikkelsen E., Satchell E., … Sheline Y. I . (2016). Dimensional depression severity in women with major depression and post-traumatic stress disorder correlates with fronto-amygdalar hypoconnectivty. Molecular Psychiatry, 21(7), 894-902.
doi: 10.1038/mp.2015.149URLpmid: 26416545
[45] Shattuck D. W., Mirza M., Adisetiyo V., Hojatkashani C., Salamon G., Narr K. L., … Toga A. W . (2007). Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage, 39(3), 1064-1080.
doi: 10.1016/j.neuroimage.2007.09.031URLpmid: 18037310
[46] Sonmez A. I., Camsari D. D., Nandakumar A. L., Voort J. L. V., Kung S., Lewis C. P., & Croarkin P. E . (2019). Accelerated TMS for depression: A systematic review and meta-analysis. Psychiatry Research, 273, 770-781.
doi: 10.1016/j.psychres.2018.12.041URLpmid: 31207865
[47] Sorgi K. M., & van 't Wout M . (2016). The influence of cooperation and defection on social decision making in depression: A study of the iterated prisoner's dilemma game. Psychiatry Research, 246, 512-519.
doi: 10.1016/j.psychres.2016.10.025URLpmid: 27821362
[48] Soutschek A., Sauter M., & Schubert T . (2015). The importance of the lateral prefrontal cortex for strategic decision making in the prisoner’s dilemma. Cognitive, Affective, & Behavioral Neuroscience, 15, 854-860.
[49] Stange J. P., Bessette K. L., Jenkins L. M., Peters A. T., Feldhaus C., Crane N. A., … Langenecker S. A . (2017). Attenuated intrinsic connectivity within cognitive control network among individuals with remitted depression: Temporal stability and association with negative cognitive styles. Human Brain Mapping, 38(6), 2939-2954.
doi: 10.1002/hbm.23564URLpmid: 28345197
[50] Strang S., Gross J., Schuhmann T., Riedl A., Weber B., & Sack A . (2015). Be nice if you have to—The neurobiological roots of strategic fairness. Social Cognitive and Affective Neuroscience, 10(6), 790-796.
doi: 10.1093/scan/nsu114URLpmid: 25190704
[51] Sun P., Zheng L., Li L., Guo X., Zhang W., & Zheng Y . (2016). The neural responses to social cooperation in gain and loss context. PLoS One, 11(8), e0160503.
doi: 10.1371/journal.pone.0160503URLpmid: 27494142
[52] Wang K., Wei D., Yang J., Xie P., Hao X., & Qiu J . (2015). Individual differences in rumination in healthy and depressive samples: association with brain structure, functional connectivity and depression. Psychological Medicine, 45(14), 2999-3008.
doi: 10.1017/S0033291715000938URLpmid: 26219340
[53] Wise T., Radua J., Via E., Cardoner N., Abe O., Adams T. M., … Arnone D . (2017). Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Molecular Psychiatry, 22(10), 1455-1463.
doi: 10.1038/mp.2016.72URLpmid: 27217146
[54] World Health Organization. (2018) Depression. Fact sheet published on 22 March 2018, available from https://www.who.int/news-room/fact-sheets/detail/depression.
[55] Xue H., Lu K., & Hao N . (2018). Cooperation makes two less-creative individuals turn into a highly-creative pair. NeuroImage, 172, 527-537.
doi: 10.1016/j.neuroimage.2018.02.007URLpmid: 29427846
[56] Zhang D., Lin Y., Jing Y., Feng C., & Gu R . (2019). The dynamics of belief updating in human cooperation: Findings from inter-brain ERP hyperscanning. NeuroImage, 198, 1-12.
doi: 10.1016/j.neuroimage.2019.05.029URLpmid: 31085300




[1]熊承清, 许佳颖, 马丹阳, 刘永芳. 囚徒困境博弈中对手面部表情对合作行为的影响及其作用机制[J]. 心理学报, 2021, 53(8): 919-932.
[2]陈思静, 邢懿琳, 翁异静, 黎常. 第三方惩罚对合作的溢出效应:基于社会规范的解释[J]. 心理学报, 2021, 53(7): 758-772.
[3]莫李澄, 郭田友, 张岳瑶, 徐锋, 张丹丹. 激活右腹外侧前额叶提高抑郁症患者对社会疼痛的情绪调节能力:一项TMS研究[J]. 心理学报, 2021, 53(5): 494-504.
[4]黄垣成, 赵清玲, 李彩娜. 青少年早期抑郁和自伤的联合发展轨迹:人际因素的作用[J]. 心理学报, 2021, 53(5): 515-526.
[5]侯娟, 朱英格, 方晓义. 手机成瘾与抑郁:社交焦虑和负性情绪信息注意偏向的多重中介作用[J]. 心理学报, 2021, 53(4): 362-373.
[6]崔芳, 杨佳苗, 古若雷, 刘洁. 右侧颞顶联合区及道德加工脑网络的功能连接预测社会性框架效应:来自静息态功能磁共振的证据[J]. 心理学报, 2021, 53(1): 55-66.
[7]苗晓燕, 孙欣, 匡仪, 汪祚军. 共患难, 更同盟:共同经历相同负性情绪事件促进合作行为[J]. 心理学报, 2021, 53(1): 81-94.
[8]李世峰, 吴艺玲, 张福民, 许琼英, 周爱保. 自我肯定缓冲新冠疫情引发的焦虑反应:一项随机对照研究[J]. 心理学报, 2020, 52(7): 886-894.
[9]曹娜, 孟海江, 王艳秋, 邱方晖, 谭晓缨, 吴殷, 张剑. 左侧背外侧前额叶在程序性运动学习中的作用[J]. 心理学报, 2020, 52(5): 597-608.
[10]田相娟, 曹衍淼, 张文新. 母亲消极教养、同伴侵害与FKBP5基因对青少年抑郁的影响[J]. 心理学报, 2020, 52(12): 1407-1420.
[11]王建峰, 戴冰. “追名弃利”:权力动机与社会存在对亲社会行为的影响[J]. 心理学报, 2020, 52(1): 55-65.
[12]金心怡,周冰欣,孟斐. 3岁幼儿的二级观点采择及合作互动的影响[J]. 心理学报, 2019, 51(9): 1028-1039.
[13]王美萍,郑晓洁,夏桂芝,刘迪迪,陈翩,张文新. 负性生活事件与青少年早期抑郁的关系:COMT基因Val158Met多态性与父母教养行为的调节作用[J]. 心理学报, 2019, 51(8): 903-913.
[14]李红,杨小光,郑文瑜,王超. 抑郁倾向对个体情绪调节目标的影响——来自事件相关电位的证据[J]. 心理学报, 2019, 51(6): 637-647.
[15]彭婉晴,罗帏,周仁来. 工作记忆刷新训练改善抑郁倾向大学生情绪调节能力的HRV证据[J]. 心理学报, 2019, 51(6): 648-661.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4704
相关话题/心理 社会 青少年 概率 空间