删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

双通道分配性注意对视听觉返回抑制的影响

本站小编 Free考研考试/2022-01-01

唐晓雨1(), 孙佳影1, 彭姓2
1 辽宁师范大学心理学院; 辽宁省儿童青少年健康人格评定与培养协同创新中心, 大连 116029
2 中国民用航空飞行学院航空人因与工效学研究所, 四川 广汉 418307
收稿日期:2019-08-08出版日期:2020-03-25发布日期:2020-01-18
通讯作者:唐晓雨E-mail:tangyu-2006@163.com

基金资助:* 国家自然科学基金项目资助(31600882)

The effect of bimodal divided attention on inhibition of return with audiovisual targets

TANG Xiaoyu1(), SUN Jiaying1, PENG Xing2
1 School of Psychology, Liaoning Collaborative Innovation Center of Children and Adolescents Healthy Personality Assessment and Cultivation, Liaoning Normal University, Dalian 116029, China
2 Institute of Aviation Human Factors and Ergonomics, Civil Aviation Flight University of China, Guanghan 618307, China
Received:2019-08-08Online:2020-03-25Published:2020-01-18
Contact:TANG Xiaoyu E-mail:tangyu-2006@163.com






摘要/Abstract


摘要: 本研究基于线索-靶子范式, 操纵目标刺激类型(视觉、听觉、视听觉)与线索有效性(有效线索、中性条件、无效线索)两个自变量, 通过3个实验来考察双通道分配性注意对视听觉返回抑制(inhibition of return, IOR)的影响。实验1 (听觉刺激呈现在左/右侧)结果发现, 在双通道分配性注意条件下, 视觉目标产生显著IOR效应, 而视听觉目标没有产生IOR效应; 实验2 (听觉刺激呈现在左/右侧)与实验3 (听觉刺激呈现在中央)结果发现, 在视觉通道选择性注意条件下, 视觉与视听觉目标均产生显著IOR效应但二者无显著差异。结果表明:双通道分配性注意减弱视听觉IOR效应。



图1实验1流程示意图 注:图左为实验刺激呈现位置的示意图, 图右为单个试次的流程图。图右中视觉线索(白色方框)呈现在左侧, 目标(视听觉)也呈现在左侧(即, 有效线索位置), 要求被试对目标刺激进行既快又准的检测反应。其中, 目标刺激(V/A/AV)分别代表视觉(visual)、听觉(auditory)和视听觉(audiovisual)通道目标。ISI是指刺激间时间间隔(inter-stimulus interval)。ITI是指试次间的时间间隔(inter-trial interval)。
图1实验1流程示意图 注:图左为实验刺激呈现位置的示意图, 图右为单个试次的流程图。图右中视觉线索(白色方框)呈现在左侧, 目标(视听觉)也呈现在左侧(即, 有效线索位置), 要求被试对目标刺激进行既快又准的检测反应。其中, 目标刺激(V/A/AV)分别代表视觉(visual)、听觉(auditory)和视听觉(audiovisual)通道目标。ISI是指刺激间时间间隔(inter-stimulus interval)。ITI是指试次间的时间间隔(inter-trial interval)。


表1实验1~3不同条件下的正确率与反应时(M±SD)
目标刺激类型 线索有效性 实验1 实验2 实验3
ACC (%) RT (ms) ACC (%) RT (ms) ACC (%) RT (ms)
AV 有效线索 99 ± 1 449 ± 61 99 ± 1 418 ± 37 97 ± 5 425 ± 77
无效线索 99 ± 1 446 ± 65 99 ± 1 401 ± 35 96 ± 6 408 ± 79
V 有效线索 97 ± 3 476 ± 63 98 ± 2 432 ± 37 95 ± 9 452 ± 81
无效线索 97 ± 3 465 ± 70 99 ± 2 432 ± 36 95 ± 7 431 ± 80
A 有效线索 96 ± 2 498 ± 73
无效线索 94 ± 4 519 ± 83

表1实验1~3不同条件下的正确率与反应时(M±SD)
目标刺激类型 线索有效性 实验1 实验2 实验3
ACC (%) RT (ms) ACC (%) RT (ms) ACC (%) RT (ms)
AV 有效线索 99 ± 1 449 ± 61 99 ± 1 418 ± 37 97 ± 5 425 ± 77
无效线索 99 ± 1 446 ± 65 99 ± 1 401 ± 35 96 ± 6 408 ± 79
V 有效线索 97 ± 3 476 ± 63 98 ± 2 432 ± 37 95 ± 9 452 ± 81
无效线索 97 ± 3 465 ± 70 99 ± 2 432 ± 36 95 ± 7 431 ± 80
A 有效线索 96 ± 2 498 ± 73
无效线索 94 ± 4 519 ± 83



图2实验1不同目标刺激类型和线索有效性下的平均反应时(*p < 0.05, ***p < 0.001)
图2实验1不同目标刺激类型和线索有效性下的平均反应时(*p < 0.05, ***p < 0.001)


表2实验1~3不同条件下CE、rMRE结果对比
实验 条件 M 95% CI t p
下限 上限
实验1
CE V 10.83 1.15 20.52 2.27 0.029
A -21.29 -30.92 -11.66 -4.50 0.000
AV 2.78 -6.27 11.84 0.62 0.538
CE对比 AV vs. V -8.05 -14.83 -1.26 -2.41 0.022
rMRE 有效 4.08 2.90 5.27 7.01 0.000
无效 2.38 0.88 3.87 3.24 0.003
rMRE对比 有效vs.无效 1.70 0.24 3.16 2.38 0.023
实验2
CE V 9.47 0.68 18.26 2.20 0.036
AV 17.25 7.14 27.35 3.49 0.002
CE对比 AV vs. V 7.78 -0.91 16.46 1.83 0.077
rMRE 有效 2.01 0.25 3.76 2.33 0.026
无效 3.42 1.42 5.42 3.50 0.002
rMRE对比 有效vs.无效 -1.41 -3.51 0.68 -1.37 0.178
实验3
CE V 20.35 5.62 35.08 2.80 0.008
AV 17.02 4.18 29.86 2.68 0.011
CE对比 AV vs. V -3.33 -13.94 7.27 -0.63 0.528
rMRE 有效 4.75 2.96 6.55 5.36 0.000
无效 4.89 2.75 7.04 4.62 0.000
rMRE对比 有效vs.无效 -0.14 -2.25 1.97 -0.13 0.893

表2实验1~3不同条件下CE、rMRE结果对比
实验 条件 M 95% CI t p
下限 上限
实验1
CE V 10.83 1.15 20.52 2.27 0.029
A -21.29 -30.92 -11.66 -4.50 0.000
AV 2.78 -6.27 11.84 0.62 0.538
CE对比 AV vs. V -8.05 -14.83 -1.26 -2.41 0.022
rMRE 有效 4.08 2.90 5.27 7.01 0.000
无效 2.38 0.88 3.87 3.24 0.003
rMRE对比 有效vs.无效 1.70 0.24 3.16 2.38 0.023
实验2
CE V 9.47 0.68 18.26 2.20 0.036
AV 17.25 7.14 27.35 3.49 0.002
CE对比 AV vs. V 7.78 -0.91 16.46 1.83 0.077
rMRE 有效 2.01 0.25 3.76 2.33 0.026
无效 3.42 1.42 5.42 3.50 0.002
rMRE对比 有效vs.无效 -1.41 -3.51 0.68 -1.37 0.178
实验3
CE V 20.35 5.62 35.08 2.80 0.008
AV 17.02 4.18 29.86 2.68 0.011
CE对比 AV vs. V -3.33 -13.94 7.27 -0.63 0.528
rMRE 有效 4.75 2.96 6.55 5.36 0.000
无效 4.89 2.75 7.04 4.62 0.000
rMRE对比 有效vs.无效 -0.14 -2.25 1.97 -0.13 0.893



图3实验1不同线索有效性下的rMRE 注:rMRE (相对多感觉反应增强; relative amount of multisensory response enhancement); *p < 0.05。
图3实验1不同线索有效性下的rMRE 注:rMRE (相对多感觉反应增强; relative amount of multisensory response enhancement); *p < 0.05。



图4实验2不同条件下的平均反应时和rMRE 注:(a)不同目标刺激类型和线索有效性下的平均反应时(*p < 0.05, **p < 0.01)。(b)不同线索有效性下的rMRE (相对多感觉反应增强; relative amount of multisensory response enhancement)。
图4实验2不同条件下的平均反应时和rMRE 注:(a)不同目标刺激类型和线索有效性下的平均反应时(*p < 0.05, **p < 0.01)。(b)不同线索有效性下的rMRE (相对多感觉反应增强; relative amount of multisensory response enhancement)。



图5实验3不同条件下的平均反应时和rMRE 注:(a)不同目标刺激类型和线索有效性下的平均反应时(*p < 0.05, **p < 0.01)。(b)不同线索有效性下的rMRE (相对多感觉反应增强; relative amount of multisensory response enhancement)。
图5实验3不同条件下的平均反应时和rMRE 注:(a)不同目标刺激类型和线索有效性下的平均反应时(*p < 0.05, **p < 0.01)。(b)不同线索有效性下的rMRE (相对多感觉反应增强; relative amount of multisensory response enhancement)。







[1] Beck D. M., & Kastner S . (2009). Top-down and bottom-up mechanisms in biasing competition in the human brain. Vision Research, 49(10), 1154-1165.
[2] Carrasco M . (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484-1525.
[3] Chica A. B., Lupianez J., & Bartolomeo P . (2006). Dissociating inhibition of return from endogenous orienting of spatial attention: Evidence from detection and discrimination tasks. Cognitive Neuropsychology, 23(7), 1015-1034.
[4] Eimer M., & Driver J . (2001). Crossmodal links in endogenous and exogenous spatial attention: Evidence from event-related brain potential studies. Neuroscience and Biobehavioral Review, 25(6), 497-511.
[5] Frassinetti F., Bolognini N., & Làdavas E . (2002). Enhancement of visual perception by crossmodal visuo-auditory interaction. Experimental Brain Research, 147(3), 332-343.
[6] Gao Y., Li Q., Yang W., Yang J., Tang X., & Wu J . (2014). Effects of ipsilateral and bilateral auditory stimuli on audiovisual integration: A behavioral and event-related potential study. Neuroreport, 25(9), 668-675.
[7] Klein R . (1988). Inhibitory tagging system facilitates visual search. Nature, 334(6181), 430-431.
[8] Klein R. M . (2000). Inhibition of return. Trends in Cognitive Science, 4(4), 138-147.
[9] Lupiáñez J., Milán E. G., Tornay F. J., Madrid E., & Tudela P . (1997). Does IOR occur in discrimination tasks? Yes, it does, but later. Perception & Psychophysics, 59(8), 1241-1254.
[10] Lupiáñez J., Ruz M., Funes M. J., & Milliken B . (2007). The manifestation of attentional capture: Facilitation or IOR depending on task demands. Psychological Research, 71(1), 77-91.
[11] Matusz P. J., & Eimer M . (2011). Multisensory enhancement of attentional capture in visual search. Psychonomic Bulletin & Review, 18(5), 904-909.
[12] Mcdonald J. J., & Ward L. M . (1999). Spatial relevance determines facilitatory and inhibitory effects of auditory covert spatial orienting. Journal of Experimental Psychology: Human Perception & Performance, 25(5), 1234-1252.
[13] Meredith M. A., & Stein B. E . (1986). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56(3), 640-662.
[14] Mishra J., Bavelier D., & Gazzaley A . (2012). How to assess gaming-induced benefits on attention and working memory. Games for Health Journal, 1(3), 192-198.
[15] Mozolic J. L., Hugenschmidt C. E., Peiffer A. M., & Laurienti P. J . (2008). Modality-specific selective attention attenuates multisensory integration. Experimental Brain Research, 184(1), 39-52.
[16] Peng X., Chang R S., Li Q., Wang A J., & Tang X Y . (2019). Visually induced inhibition of return affects the audiovisual integration under different SOA conditions. Acta Psychologica Sinica, 51(7), 759-771.
[ 彭姓, 常若松, 李奇, 王爱君, 唐晓雨 . (2019). 不同SOA下视觉返回抑制对视听觉整合的调节作用. 心理学报, 51(7), 759-771.]
[17] Posner M. I., & Cohen Y . (1984). Components of visual orienting. Attention and performance X: Control of Language Processes, 32, 531-556.
[18] Posner M. I., Rafal R. D., Choate L. S., & Vaughan J . (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2(3), 211-228.
[19] Pratt J., & Fischer M. H . (2002). Examining the role of the fixation cue in inhibition of return. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 56(4), 294-301.
[20] Pratt J., Kingstone A., & Khoe W . (1997). Inhibition of return in location- and identity-based choice decision tasks. Perception & Psychophysics, 59(6), 964-971.
[21] Prime D. J., Tata M. S., & Ward L. M . (2003). Event-related potential evidence for attentional inhibition of return in audition. Neuroreport, 14(3), 393-397.
[22] Reuter-Lorenz P. A., & Rosenquist J. N . (1996). Auditory cues and inhibition of return: The importance of oculomotor activation. Experimental Brain Research, 112(1), 119-126.
[23] Roggeveen A. B., Prime D. J., & Ward L. M . (2005). Inhibition of return and response repetition within and between modalities. Experimental Brain Research, 167(1), 86-94.
[24] Santangelo V., & Spence C . (2007). Multisensory cues capture spatial attention regardless of perceptual load. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1311-1321.
[25] Satel J., Hilchey M. D., Wang Z. G., Story R., & Klein R. M . (2013). The effects of ignored versus foveated cues upon inhibition of return: An event-related potential study. Attention, Perception, & Psychophysics, 75(1), 29-40.
[26] Schmitt M., Postma A., & de Haan E . (2000). Interactions between exogenous auditory and visual spatial attention. The Quarterly Journal of Experimental Psychology Section A, 53(1), 105-130.
[27] Senkowski D., Saint-Amour D., Höfle M., & Foxe J. J . (2011). Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness. Neuroimage, 56(4), 2200-2208.
[28] Slagter H. A., Prinssen S., Reteig L. C., & Mazaheri A . (2016). Facilitation and inhibition in attention: Functional dissociation of pre-stimulus alpha activity, P1, and N1 components. Neuroimage, 125(6), 25-35.
[29] Spence C., & Driver J . (1998). Inhibition of return following an auditory cue. The role of central reorienting events. Experimental Brain Research, 118(3), 352-360.
[30] Spence C., Lloyd D., Mcglone F., Nicholls M. E. R., & Driver J . (2000). Inhibition of return is supramodal: A demonstration between all possible pairings of vision, touch, and audition. Experimental Brain Research, 134(1), 42-48.
[31] Talsma D., & Woldorff M. G . (2005). Selective attention and multisensory integration: Multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience, 17(7), 1098-1114.
[32] Tang X., Gao Y., Yang W., Ren Y., Wu J., Ming Z., & Wu Q . (2019). Bimodal divided attention attenuates inhibition of return with audiovisual targets. Experimental Brain Research, 237(4), 1093-1107.
[33] Tang X., Wu J., & Shen Y . (2016). The interactions of multisensory integration with endogenous and exogenous attention. Neuroscience and Biobehavioral Reviews, 61, 208-224.
[34] van der Burg E., Olivers C. N. L., Bronkhorst A. W., & Theeuwes J . (2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception and Performance, 34(5), 1053-1065.
[35] van der Burg E., Talsma D., Olivers C. N., Hickey C., & Theeuwes J . (2011). Early multisensory interactions affect the competition among multiple visual objects. Neuroimage, 55(3), 1208-1218.
[36] van der Stoep N., van der Stigchel S., & Nijboer T. C. W . (2015). Exogenous spatial attention decreases audiovisual integration. Attention, Perception, & Psychophysics, 77(2), 464-482.
[37] van der Stoep N., van der Stigchel S., Nijboer T. C. W., & Spence C . (2016). Visually induced inhibition of return affects the integration of auditory and visual information. Perception, 46(1), 6-17.
[38] Wu J., Yang J., Yu Y., Li Q., Nakamura N., Shen Y., … Abe K . (2012). Delayed audiovisual integration of patients with mild cognitive impairment and Alzheimer's disease compared with normal aged controls. Journal of Alzheimers Disease Jad, 32(2), 317-328.
[39] Zhang M., Tang X., & Wu J . (2013). Blocking the link between stimulus and response at previously attended locations: Evidence for inhibitory tagging mechanism. Neuroscience and Biomedical Engineering, 1(1), 13-21.




[1]张明, 桑汉斌, 鲁柯, 王爱君. 试次历史对跨通道非空间返回抑制的影响[J]. 心理学报, 2021, 53(7): 681-693.
[2]唐晓雨, 吴英楠, 彭姓, 王爱君, 李奇. 内源性空间线索有效性对视听觉整合的影响[J]. 心理学报, 2020, 52(7): 835-846.
[3]彭姓,常若松,李奇,王爱君,唐晓雨. 不同SOA下视觉返回抑制对视听觉整合的调节作用[J]. 心理学报, 2019, 51(7): 759-771.
[4]王爱君, 刘晓乐, 唐晓雨, 张 明. 三维空间中不同视野深度位置上的返回抑制[J]. 心理学报, 2017, 49(6): 723-732.
[5]徐菊;胡媛艳;王双; 李艾苏;张明;张阳. 返回抑制训练效应的认知神经机制 ——来自ERP研究的证据[J]. 心理学报, 2016, 48(6): 658-670.
[6]徐菊;马方圆;张明;张阳. 返回抑制和抑制标签在长时训练下的分离[J]. 心理学报, 2015, 47(8): 981-991.
[7]王爱君;李毕琴;张明. 三维空间深度位置上基于空间的返回抑制[J]. 心理学报, 2015, 47(7): 859-868.
[8]范海楠;许百华. 动态情景中颜色特征和身份特征在返回抑制中的作用[J]. 心理学报, 2014, 46(11): 1628-1638.
[9]张瑜;郑希付;黄珊珊;李悦;杜晓芬;周薇. 不同线索下特质焦虑个体的返回抑制[J]. 心理学报, 2013, 45(4): 446-452.
[10]徐丹妮;张佳悦;李先春. 面孔性别辨认中返回抑制效应的性别差异[J]. 心理学报, 2013, 45(2): 161-168.
[11]王敬欣;贾丽萍;白学军;罗跃嘉. 返回抑制过程中情绪面孔加工优先:ERPs研究[J]. 心理学报, 2013, 45(1): 1-10.
[12]刘盼,谢宁,吴艳红. 认知老化中有意控制对自动抑制的调节作用[J]. 心理学报, 2010, 42(10): 981-987.
[13]邓晓红,张德玄,黄诗雪,袁,雯,周晓林. 阈上和阈下不同情绪线索对返回抑制的影响[J]. 心理学报, 2010, 42(03): 325-333.
[14]戴琴,冯正直. 抑郁个体对情绪面孔的返回抑制能力不足[J]. 心理学报, 2009, 41(12): 1175-1188.
[15]沈模卫,高在峰,张光强,水仁德,乔歆新,李伟健. 三维倾斜平面的返回抑制[J]. 心理学报, 2007, 39(06): 951-958.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4654
相关话题/实验 心理 视觉 空间 流程