1 辽宁师范大学 心理学院, 辽宁省儿童青少年健康人格评定与培养协同创新中心, 大连 116029
2 长春理工大学 计算机科学技术学院, 长春 130022
3 苏州大学 心理学系, 心理与行为科学研究中心, 苏州 215123
收稿日期:
2018-05-21出版日期:
2019-07-25发布日期:
2019-05-22通讯作者:
王爱君,唐晓雨E-mail:ajwang@suda.edu.cn;tangyu-2006@163.com基金资助:
* 国家自然科学基金项目(31600882);国家自然科学基金项目(31700939);国家自然科学基金项目(61773076);江苏省基础研究计划(BK20170333);辽宁省高水平创新团队国(境)外培养项目资助(2018LNGXGJWPY-YB015)Visually induced inhibition of return affects the audiovisual integration under different SOA conditions
PENG Xing1, CHANG Ruosong1, LI Qi2, WANG Aijun3(), TANG Xiaoyu1()1 School of Psychology, Liaoning Collaborative Innovation Center of Children and Adolescents Healthy Personality Assessment and Cultivation, Liaoning Normal University, Dalian 116029, China
2 School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
3 Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
Received:
2018-05-21Online:
2019-07-25Published:
2019-05-22Contact:
WANG Aijun,TANG Xiaoyu E-mail:ajwang@suda.edu.cn;tangyu-2006@163.com摘要/Abstract
摘要: 基于外源性线索-靶子范式, 采用2(线索-靶子间隔时间, stimulus onset asynchronies, SOA:400~600 ms、1000~1200 ms) × 3(目标刺激类型:视觉、听觉、视听觉) × 2(线索有效性:有效线索、无效线索)的被试内实验设计, 要求被试对目标刺激完成检测任务, 以考察视觉线索诱发的返回抑制(inhibition of return, IOR)对视听觉整合的调节作用, 从而为感知觉敏感度、空间不确定性及感觉通道间信号强度差异假说提供实验证据。结果发现:(1) 随SOA增长, 视觉IOR效应显著降低, 视听觉整合效应显著增强; (2) 短SOA (400~600 ms)时, 有效线索位置上的视听觉整合效应显著小于无效线索位置, 但长SOA (1000~1200 ms)时, 有效与无效线索位置上的视听觉整合效应并无显著差异。结果表明, 在不同SOA条件下, 视觉IOR对视听觉整合的调节作用产生变化, 当前结果支持感觉通道间信号强度差异假说。
图/表 6
图1实验示意图 注:图左为刺激呈现位置的示意图, 图右为单个试次的流程图。图右中视觉线索(白色正方形)呈现在左侧, 目标(视听觉)也呈现在左侧(即, 有效线索位置), 要求被试对目标刺激进行既快又准的检测反应。其中, 目标刺激(V/A/AV)分别代表视觉(visual)、听觉(auditory)和视听觉(audiovisual)通道目标。ISI是指刺激间时间间隔(inter-stimulus interval)。ITI是指试次间的时间间隔(inter-trial interval)。SOA的计算是由视觉线索时间(50 ms), 2个ISI时间(150~250 ms/450~550 ms)以及视觉中心线索时间(50 ms)相加而得, 因此SOA为400~600 ms/1000~1200 ms。
图1实验示意图 注:图左为刺激呈现位置的示意图, 图右为单个试次的流程图。图右中视觉线索(白色正方形)呈现在左侧, 目标(视听觉)也呈现在左侧(即, 有效线索位置), 要求被试对目标刺激进行既快又准的检测反应。其中, 目标刺激(V/A/AV)分别代表视觉(visual)、听觉(auditory)和视听觉(audiovisual)通道目标。ISI是指刺激间时间间隔(inter-stimulus interval)。ITI是指试次间的时间间隔(inter-trial interval)。SOA的计算是由视觉线索时间(50 ms), 2个ISI时间(150~250 ms/450~550 ms)以及视觉中心线索时间(50 ms)相加而得, 因此SOA为400~600 ms/1000~1200 ms。
图2不同条件下的平均反应时和IOR效应 注:图(a)中的反应时结果为平均中位数。图(b)中IOR效应由有效线索位置上目标的平均反应时减去无效线索位置上目标的平均反应时。* p < 0.05; *** p < 0.001。
图2不同条件下的平均反应时和IOR效应 注:图(a)中的反应时结果为平均中位数。图(b)中IOR效应由有效线索位置上目标的平均反应时减去无效线索位置上目标的平均反应时。* p < 0.05; *** p < 0.001。
表1不同SOA条件下Cueing effect、rMRE、pAUC结果对比
条件 | M | 95% CI | t | p | |
---|---|---|---|---|---|
下限 | 上限 | ||||
短SOA | |||||
Cueing effect (ms) | |||||
V | 38.77 | 31.54 | 46.00 | 11.09 | 0.000 |
A | 1.83 | -1.43 | 5.10 | 1.16 | 0.257 |
AV | 16.00 | 11.55 | 20.45 | 7.43 | 0.000 |
Cueing effect对比(ms) | |||||
AV vs. V | -22.77 | -30.12 | -15.43 | -6.41 | 0.000 |
V vs. A | 36.94 | 28.53 | 45.34 | 9.09 | 0.000 |
AV vs. A | 14.17 | 9.06 | 19.28 | 5.74 | 0.000 |
rMRE对比(%) | |||||
无效vs.有效 | 3.20 | 1.53 | 4.87 | 3.97 | 0.001 |
pAUC对比(ms) | |||||
无效vs.有效 | -4.30 | -6.64 | -1.96 | -3.80 | 0.001 |
长SOA | |||||
Cueing effect (ms) | |||||
V | 26.98 | 19.42 | 34.54 | 7.38 | 0.000 |
A | 5.88 | 0.51 | 11.24 | 2.26 | 0.033 |
AV | 10.85 | 5.88 | 15.83 | 4.51 | 0.000 |
Cueing effect对比(ms) | |||||
AV vs. V | -16.13 | -26.51 | -5.74 | -3.21 | 0.004 |
V vs. A | 21.10 | 14.24 | 27.97 | 6.36 | 0.000 |
AV vs. A | 4.98 | -2.88 | 12.84 | 1.31 | 0.203 |
rMRE对比(%) | |||||
无效 vs. 有效 | 0.4 | -1.78 | 2.59 | 0.38 | 0.706 |
pAUC对比(ms) | |||||
无效 vs. 有效 | 2.14 | -1.12 | 5.40 | 1.36 | 0.188 |
表1不同SOA条件下Cueing effect、rMRE、pAUC结果对比
条件 | M | 95% CI | t | p | |
---|---|---|---|---|---|
下限 | 上限 | ||||
短SOA | |||||
Cueing effect (ms) | |||||
V | 38.77 | 31.54 | 46.00 | 11.09 | 0.000 |
A | 1.83 | -1.43 | 5.10 | 1.16 | 0.257 |
AV | 16.00 | 11.55 | 20.45 | 7.43 | 0.000 |
Cueing effect对比(ms) | |||||
AV vs. V | -22.77 | -30.12 | -15.43 | -6.41 | 0.000 |
V vs. A | 36.94 | 28.53 | 45.34 | 9.09 | 0.000 |
AV vs. A | 14.17 | 9.06 | 19.28 | 5.74 | 0.000 |
rMRE对比(%) | |||||
无效vs.有效 | 3.20 | 1.53 | 4.87 | 3.97 | 0.001 |
pAUC对比(ms) | |||||
无效vs.有效 | -4.30 | -6.64 | -1.96 | -3.80 | 0.001 |
长SOA | |||||
Cueing effect (ms) | |||||
V | 26.98 | 19.42 | 34.54 | 7.38 | 0.000 |
A | 5.88 | 0.51 | 11.24 | 2.26 | 0.033 |
AV | 10.85 | 5.88 | 15.83 | 4.51 | 0.000 |
Cueing effect对比(ms) | |||||
AV vs. V | -16.13 | -26.51 | -5.74 | -3.21 | 0.004 |
V vs. A | 21.10 | 14.24 | 27.97 | 6.36 | 0.000 |
AV vs. A | 4.98 | -2.88 | 12.84 | 1.31 | 0.203 |
rMRE对比(%) | |||||
无效 vs. 有效 | 0.4 | -1.78 | 2.59 | 0.38 | 0.706 |
pAUC对比(ms) | |||||
无效 vs. 有效 | 2.14 | -1.12 | 5.40 | 1.36 | 0.188 |
图4不同SOA条件下不同线索有效性的rMRE/pAUC 注:* p < 0.05; ** p < 0.01。
图4不同SOA条件下不同线索有效性的rMRE/pAUC 注:* p < 0.05; ** p < 0.01。
图3不同SOA条件下不同线索有效性的反应时竞争模型分析 注:图(c)中加粗横线表示显著违反竞争模型(实际AV累积概率(CPAV)显著大于竞争模型预测累积概率(CPRace model))的时间窗口, 红色虚线代表有效线索位置, 黑色实线代表无效线索位置。*代表峰值(最大概率值)出现的时间。
图3不同SOA条件下不同线索有效性的反应时竞争模型分析 注:图(c)中加粗横线表示显著违反竞争模型(实际AV累积概率(CPAV)显著大于竞争模型预测累积概率(CPRace model))的时间窗口, 红色虚线代表有效线索位置, 黑色实线代表无效线索位置。*代表峰值(最大概率值)出现的时间。
图5不同SOA条件下不同线索有效性的视、听觉反应时之差 注:* p < 0.05。
图5不同SOA条件下不同线索有效性的视、听觉反应时之差 注:* p < 0.05。
参考文献 55
[1] | Agusti A. I., Satorres E., Pitarque A., & Meléndez J. C . ( 2017). Effects of SOA and age on the inhibition of return in a localization task. Current Psychology, 1-6. |
[2] | Calvert G. A., Spence C.& Stein, B. E.. ,( 2004). The handbook of multisensory processes. MIT Press. |
[3] | Carrasco M. , (2011). Visual attention: The past 25 years. Vision Research, 51( 13), 1484-1525. doi: 10.1016/j.visres.2011.04.012URL |
[4] | Chica A. B., Bartolomeo P., & Lupiáñez J . ( 2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research, 237( 1), 107-123. doi: 10.1016/j.bbr.2012.09.027URL |
[5] | Chica A. B., Lupianez J., & Bartolomeo P . ( 2006). Dissociating inhibition of return from endogenous orienting of spatial attention: Evidence from detection and discrimination tasks. Cognitive Neuropsychology, 23( 7), 1015-1034. doi: 10.1080/02643290600588277URL |
[6] | Cohen J. , ( 1988). Statistical power analysis for the behavioral sciences (2nd Edition). . Erlbaum Associates. |
[7] | Giard M.H., & Peronnet F. , ( 1999). Auditory-visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11( 5), 473-490. doi: 10.1162/089892999563544URL |
[8] | Hershenson M. , ( 1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63( 3), 289-293. doi: 10.1037/h0039516URL |
[9] | Klein R. , ( 1988). Inhibitory tagging system facilitates visual search. Nature, 334( 6181), 430-431. |
[10] | Klein R. . ( 2000). Inhibition of return. Trends in Cognitive Sciences, 4( 4), 138-147. doi: 10.1016/S1364-6613(00)01452-2URL |
[11] | Koningsbruggen M. G., Gabay S., Sapir A., Henik A., & Rafal R. D . ( 2010). Hemispheric asymmetry in the remapping and maintenance of visual saliency maps: A TMS study. Journal of Cognitive Neuroscience, 22( 8), 1730-1738. doi: 10.1162/jocn.2009.21356URL |
[12] | Laurienti P. J., Burdette J. H., Maldjian J. A., & Wallace M. T . ( 2006). Enhanced multisensory integration in older adults. Neurobiology of Aging, 27( 8), 1155-1163. doi: 10.1016/j.neurobiolaging.2005.05.024URL |
[13] | Lippert M., Logothetis N. K., & Kayser C . ( 2007). Improvement of visual contrast detection by a simultaneous sound. Brain Research, 1173( 1173), 102-109. doi: 10.1016/j.brainres.2007.07.050URL |
[14] | Liu Q . ( 2010). The research on brain mechanism of the multisenory integration (Unpublished doctorial dissertation). Southwest University, China. |
[ 刘强 . ( 2010). 多感觉整合脑机制研究(博士学位论文). 西南大学.] | |
[15] | Lupiáñez J., Milán E. G., Tornay F. J., Madrid E., & Tudela P . ( 1997). Does IOR occur in discrimination tasks? Yes, it does, but later. Perception & Psychophysics, 59( 8), 1241-1254. |
[16] | Lupiáñez J., Ruz M., Funes M. J., & Milliken B . ( 2007). The manifestation of attentional capture: Facilitation or IOR depending on task demands. Psychological Research, 71( 1), 77-91. doi: 10.1007/s00426-005-0037-zURL |
[17] | Macaluso E., Noppeney U., Talsma D., Vercillo T., Hartcher-O’Brien J., & Adam R . ( 2016). The curious Incident of attention in multisensory integration: Bottom- up vs. top-down. Multisensory Research, 29( 6-7), 557-583. doi: 10.1163/22134808-00002528URL |
[18] | Martínarévalo E., Chica A. B., & Lupiáñez J . ( 2015). No single electrophysiological marker for facilitation and inhibition of return: A review. Behavioural Brain Research, 300, 1-10. |
[19] | McDonald J. J., Tedersälejärvi W. A., Russo F. D., & Hillyard S. A . ( 2005). Neural basis of auditory-induced shifts in visual time-order perception. Nature Neuroscience, 8( 9), 1197-1202. |
[20] | Miller J. , ( 1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14( 2), 247-279. doi: 10.1016/0010-0285(82)90010-XURL |
[21] | Miller J. ( 1986). Time course of coactivation in bimodal divided attention. Perception & Psychophysics, 40( 5), 331-343. |
[22] | Noesselt T., Tyll S., Boehler C. N., Budinger E., Heinze H. J., & Driver J . ( 2010). Sound-induced enhancement of low-intensity vision: Multisensory influences on human sensory-specific cortices and thalamic bodies relate to perceptual enhancement of visual detection sensitivity. Journal of Neuroscience, 30( 41), 13609-13623. doi: 10.1523/JNEUROSCI.4524-09.2010URL |
[23] | Otto T. U., Dassy B., & Mamassian P . ( 2013). Principles of multisensory behavior. Journal of Neuroscience, 33( 17), 7463-7474. doi: 10.1523/JNEUROSCI.4678-12.2013URL |
[24] | Posner M.I., & Cohen Y. , ( 1984). Components of visual orienting. Attention and Performance X: Control of Language Processes, 32, 531-556. |
[25] | Posner M. I., Rafal R. D., Choate L. S., & Vaughan J . ( 1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2( 3), 211-228. doi: 10.1080/02643298508252866URL |
[26] | Pratt J., & Fischer M.H . ( 2002). Examining the role of the fixation cue in inhibition of return. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 56( 4), 294-301. doi: 10.1037/h0087405URL |
[27] | Prime D. J., Visser T. A. W., & Ward L. M . ( 2006). Reorienting attention and inhibition of return. Perception & Psychophysics, 68( 8), 1310-1323. |
[28] | Prime D.J., & Ward L.M . ( 2006). Cortical expressions of inhibition of return. Brain Research, 1072( 1), 161-174. doi: 10.1016/j.brainres.2005.11.081URL |
[29] | Raab D.H . ( 1962). Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24( 5), 574-590. doi: 10.1111/j.2164-0947.1962.tb01433.xURL |
[30] | Reuter-Lorenz P. A., Jha A. P., & Rosenquist J. N . ( 1996). What is inhibited in inhibition of return? Journal of Experimental Psychology: Human Perception and Performance, 22( 2), 367-378. doi: 10.1037/0096-1523.22.2.367URL |
[31] | Schmitt M., Postma A., & De H. E . ( 2000). Interactions between exogenous auditory and visual spatial attention. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 53( 1), 105-130. doi: 10.1080/713755882URL |
[32] | Senkowski D., Saint-Amour D., Höfle M., & Foxe J. J . ( 2011). Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness. Neuroimage, 56( 4), 2200-2208. doi: 10.1016/j.neuroimage.2011.03.075URL |
[33] | Slagter H. A., Prinssen S., Reteig L. C., & Mazaheri A . ( 2016). Facilitation and inhibition in attention: Functional dissociation of pre-stimulus alpha activity, P1, and N1 components. Neuroimage, 125( 6), 25-35. doi: 10.1016/j.neuroimage.2015.09.058URL |
[34] | Spence C. , ( 2010). Crossmodal spatial attention. Annals of the New York Academy of Sciences, 1191( 1), 182-200. doi: 10.1111/nyas.2010.1191.issue-1URL |
[35] | Spence C., & Driver J. , ( 2004). Crossmodal space and crossmodal attention. Politics. |
[36] | Spence C., Lloyd D., Mcglone F., Nicholls M. E. R., & Driver J . ( 2000). Inhibition of return is supramodal: A demonstration between all possible pairings of vision, touch, and audition. Experimental Brain Research, 134( 1), 42-48. doi: 10.1007/s002210000442URL |
[37] | Stein B. E., London N., Wilkinson L. K., & Price D. D . ( 1996). Enhancement of perceived visual intensity by auditory stimuli: a psychophysical analysis. Journal of Cognitive Neuroscience, 8( 6), 497-506. doi: 10.1162/jocn.1996.8.6.497URL |
[38] | Stein B.E., & Meredith M.A . ( 1993). The merging of the senses. Journal of Cognitive Neuroscience, 5( 3), 373-374. doi: 10.1162/jocn.1993.5.3.373URL |
[39] | Stein B.E., & Stanford T.R . ( 2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9( 4), 255-266. |
[40] | Talsma D., Doty T. J., & Woldorff M. G . ( 2007). Selective attention and audiovisual integration: Is attending to both modalities a prerequisite for early integration? Cerebral Cortex, 17( 3), 679-690. |
[41] | Talsma D., Senkowski D., Soto-Faraco S., & Woldorff M. G . ( 2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14( 9), 400-410. doi: 10.1016/j.tics.2010.06.008URL |
[42] | Talsma D., & Woldorff M.G . ( 2005). Selective attention and multisensory integration: Multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience, 17( 7), 1098-1114. doi: 10.1162/0898929054475172URL |
[43] | Tang X. Y., Wu J. L., & Shen Y . ( 2016). The interactions of multisensory integration with endogenous and exogenous attention. Neuroscience & Biobehavioral Reviews, 61, 208-224. |
[44] | Tang X. Y., Gao Y. L., Yang W. P., Ren Y. N., Wu J. L., Zhang M., Wu Q .(in press). Bimodal-divided attention attenuates visually induced inhibition of return with audiovisual targets. Experimental Brain Research. First online 15 Feb. 2019, |
[45] | Tassinari G., Aglioti S., Chelazzi L., Peru A., & Berlucchi G . ( 1994). Do peripheral non-informative cues induce early facilitation of target detection? Vision Research, 34( 2), 179-189. doi: 10.1016/0042-6989(94)90330-1URL |
[46] | Ulrich R., Miller J., & Schröter H . ( 2007). Testing the race model inequality: An algorithm and computer programs. Behavior Research Methods, 39( 2), 291-302. doi: 10.3758/BF03193160URL |
[47] | van der Burg E., Olivers C. N. L., Bronkhorst A. W., & Theeuwes J . ( 2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception and Performance, 34( 5), 1053-1065. doi: 10.1037/0096-1523.34.5.1053URL |
[48] | van der Burg E., Talsma D., Olivers C. N. L., Hickey C., & Theeuwes J . ( 2011). Early multisensory interactions affect the competition among multiple visual objects. Neuroimage, 55( 3), 1208-1218. doi: 10.1016/j.neuroimage.2010.12.068URL |
[49] | van der Stoep N., van der Stigchel S& Nijboer, T. C. W. ., ( 2015). Erratum to: Exogenous spatial attention decreases audiovisual integration. Attention Perception & Psychophysics, 77( 1), 464-482. |
[50] | van der Stoep N., van der Stigchel S., Nijboer T. C., & Spence C . ( 2016). Visually induced inhibition of return affects the integration of auditory and visual information. Perception, 46( 1), 6-17. |
[51] | Ward L. M., Mcdonald J. J., & Lin D . ( 2000). On asymmetries in cross-modal spatial attention orienting. Percept Psychophys, 62( 6), 1258-1264. doi: 10.3758/BF03212127URL |
[52] | Wascher E., & Tipper S.P . ( 2004). Revealing effects of noninformative spatial cues: an EEG study of inhibition of return. Psychophysiology, 41( 5), 716-728. doi: 10.1111/psyp.2004.41.issue-5URL |
[53] | WEN Z. L., FAN X. T., YE B. J., & CHEN Y. S . ( 2016). Characteristics of an effect size and appropriateness of mediation effect size measures revisited. Acta Psychologica Sinica, 48( 4), 435-443. |
[ 温忠麟, 范息涛, 叶宝娟, 陈宇帅 . ( 2016). 从效应量应有的性质看中介效应量的合理性. 心理学报, 48( 4), 435-443.] | |
[54] | Yang W. P., Chu B. Q., Yang J. J., Yu Y. H., Wu J. L., & Yu S. Y . ( 2014). Elevated audiovisual temporal interaction in patients with migraine without aura. The Journal of Headache and Pain, 15( 1), 44. |
[55] | Yang Z., & Mayer A.R . ( 2014). An event-related FMRI study of exogenous orienting across vision and audition. Human Brain Mapping, 35( 3), 964-974. doi: 10.1002/hbm.22227URL |
相关文章 15
[1] | 张明, 桑汉斌, 鲁柯, 王爱君. 试次历史对跨通道非空间返回抑制的影响[J]. 心理学报, 2021, 53(7): 681-693. |
[2] | 唐晓雨, 吴英楠, 彭姓, 王爱君, 李奇. 内源性空间线索有效性对视听觉整合的影响[J]. 心理学报, 2020, 52(7): 835-846. |
[3] | 唐晓雨, 孙佳影, 彭姓. 双通道分配性注意对视听觉返回抑制的影响[J]. 心理学报, 2020, 52(3): 257-268. |
[4] | 王爱君, 刘晓乐, 唐晓雨, 张 明. 三维空间中不同视野深度位置上的返回抑制[J]. 心理学报, 2017, 49(6): 723-732. |
[5] | 徐菊;胡媛艳;王双; 李艾苏;张明;张阳. 返回抑制训练效应的认知神经机制 ——来自ERP研究的证据[J]. 心理学报, 2016, 48(6): 658-670. |
[6] | 徐菊;马方圆;张明;张阳. 返回抑制和抑制标签在长时训练下的分离[J]. 心理学报, 2015, 47(8): 981-991. |
[7] | 王爱君;李毕琴;张明. 三维空间深度位置上基于空间的返回抑制[J]. 心理学报, 2015, 47(7): 859-868. |
[8] | 范海楠;许百华. 动态情景中颜色特征和身份特征在返回抑制中的作用[J]. 心理学报, 2014, 46(11): 1628-1638. |
[9] | 张瑜;郑希付;黄珊珊;李悦;杜晓芬;周薇. 不同线索下特质焦虑个体的返回抑制[J]. 心理学报, 2013, 45(4): 446-452. |
[10] | 徐丹妮;张佳悦;李先春. 面孔性别辨认中返回抑制效应的性别差异[J]. 心理学报, 2013, 45(2): 161-168. |
[11] | 王敬欣;贾丽萍;白学军;罗跃嘉. 返回抑制过程中情绪面孔加工优先:ERPs研究[J]. 心理学报, 2013, 45(1): 1-10. |
[12] | 孙远路,胡中华,张瑞玲,寻茫茫,刘强,张庆林. 多感觉整合测量范式中存在的影响因素探讨[J]. 心理学报, 2011, 43(11): 1239-1246. |
[13] | 刘盼,谢宁,吴艳红. 认知老化中有意控制对自动抑制的调节作用[J]. 心理学报, 2010, 42(10): 981-987. |
[14] | 邓晓红,张德玄,黄诗雪,袁,雯,周晓林. 阈上和阈下不同情绪线索对返回抑制的影响[J]. 心理学报, 2010, 42(03): 325-333. |
[15] | 戴琴,冯正直. 抑郁个体对情绪面孔的返回抑制能力不足[J]. 心理学报, 2009, 41(12): 1175-1188. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4471