删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

视觉工作记忆负载类型对注意选择的影响

本站小编 Free考研考试/2022-01-01

李寿欣1(), 车晓玮1, 李彦佼1, 王丽2, 陈恺盛3
1 山东师范大学心理学院, 济南 250358
2 济南大学城实验高级中学, 济南 250358
3 济南大学商学院, 济南 250022
收稿日期:2018-09-14出版日期:2019-05-25发布日期:2019-03-20
通讯作者:李寿欣E-mail:shouxinli@sdnu.edu.cn

基金资助:国家自然科学基金(31871100);国家自然科学基金(31470973)

The effects of capacity load and resolution load on visual selective attention during visual working memory

LI Shouxin1(), CHE Xiaowei1, LI Yanjiao1, WANG Li2, CHEN Kaisheng3
1 School of Psychology, Shandong Normal University, Jinan 250358, China
2 Jinan University Town Experimental Senior High School, Jinan 250358, China
3 Business School, University of Jinan, Jinan 250022, China
Received:2018-09-14Online:2019-05-25Published:2019-03-20
Contact:LI Shouxin E-mail:shouxinli@sdnu.edu.cn






摘要/Abstract


摘要: 通过操纵Flanker任务相对于视觉工作记忆任务的呈现位置, 探讨在视觉工作记忆编码和保持阶段, 精度负载和容量负载对注意选择的影响。行为结果发现, Flanker任务呈现位置和视觉工作记忆负载类型影响注意选择; ERP结果发现, 在保持阶段, 当搜索目标和干扰项不一致时, 负载类型影响N2成分。研究表明, 在编码阶段, 视觉工作记忆负载主要通过占用更多知觉资源降低干扰效应, 支持知觉负载理论; 而在保持阶段, 当Flanker任务位于记忆项内部时, 两类负载在工作记忆表征过程中不同的神经活动导致投入到注意选择的认知控制资源不同, 可能是两类负载影响保持阶段注意选择的机制。



图1CIELAB颜色空间(Zhang & Luck, 2008)
图1CIELAB颜色空间(Zhang & Luck, 2008)



图2实验1单一试次流程图, 其中, 第一行为Flanker任务呈现于记忆项外周时, 视觉工作记忆负载为基线条件的流程图; 第二行为Flanker任务呈现于记忆项内部时, 视觉工作记忆负载为高精度条件的流程图; 第三行为Flanker任务呈现于记忆项内部时, 视觉工作记忆负载为高容量条件的流程图。
图2实验1单一试次流程图, 其中, 第一行为Flanker任务呈现于记忆项外周时, 视觉工作记忆负载为基线条件的流程图; 第二行为Flanker任务呈现于记忆项内部时, 视觉工作记忆负载为高精度条件的流程图; 第三行为Flanker任务呈现于记忆项内部时, 视觉工作记忆负载为高容量条件的流程图。


表1实验1不同条件下视觉工作记忆任务的正确率(M ± 95%CI)
Flanker任务
呈现位置
负载类型
基线 高精度负载 高容量负载
记忆项内部 0.90 ± 0.04 0.73 ± 0.04 0.70 ± 0.04
记忆项外周 0.81 ± 0.05 0.69 ± 0.05 0.67 ± 0.04

表1实验1不同条件下视觉工作记忆任务的正确率(M ± 95%CI)
Flanker任务
呈现位置
负载类型
基线 高精度负载 高容量负载
记忆项内部 0.90 ± 0.04 0.73 ± 0.04 0.70 ± 0.04
记忆项外周 0.81 ± 0.05 0.69 ± 0.05 0.67 ± 0.04


表2实验1各条件下Flanker任务的反应时(M ± 95%CI, 单位:ms)
Flanker任务呈现位置 负载类型
基线 高精度负载 高容量负载
内部呈现
一致 729.61 ± 96.69 730.89 ± 87.81 763.83 ± 96.66
不一致 940.78 ± 102.18 878.39 ± 104.25 916.00 ± 100.61
干扰效应 211.17 ± 47.85 147.50 ± 51.23 152.17 ± 69.25
外周呈现
一致 892.11 ± 97.30 880.17 ± 113.79 778.67 ± 109.83
不一致 1064.61 ± 111.81 1022.17 ± 159.53 916.28 ± 131.53
干扰效应 172.50 ± 58.49 141.94 ± 73.31 137.61 ± 57.55

表2实验1各条件下Flanker任务的反应时(M ± 95%CI, 单位:ms)
Flanker任务呈现位置 负载类型
基线 高精度负载 高容量负载
内部呈现
一致 729.61 ± 96.69 730.89 ± 87.81 763.83 ± 96.66
不一致 940.78 ± 102.18 878.39 ± 104.25 916.00 ± 100.61
干扰效应 211.17 ± 47.85 147.50 ± 51.23 152.17 ± 69.25
外周呈现
一致 892.11 ± 97.30 880.17 ± 113.79 778.67 ± 109.83
不一致 1064.61 ± 111.81 1022.17 ± 159.53 916.28 ± 131.53
干扰效应 172.50 ± 58.49 141.94 ± 73.31 137.61 ± 57.55



图3实验2单一试次流程图, 其中, 第一行为Flanker任务呈现于记忆项外周时, 视觉工作记忆负载为基线条件的流程图; 第二行为Flanker任务呈现于记忆项内部时, 视觉工作记忆负载为高精度条件的流程图; 第三行为Flanker任务呈现于记忆项外周时, 视觉工作记忆负载为高容量条件的流程图。
图3实验2单一试次流程图, 其中, 第一行为Flanker任务呈现于记忆项外周时, 视觉工作记忆负载为基线条件的流程图; 第二行为Flanker任务呈现于记忆项内部时, 视觉工作记忆负载为高精度条件的流程图; 第三行为Flanker任务呈现于记忆项外周时, 视觉工作记忆负载为高容量条件的流程图。


表3实验2不同条件下视觉工作记忆任务的正确率(M ± 95%CI)
Flanker任务
呈现位置
负载类型
基线 高精度负载 高容量负载
记忆项内部 0.87 ± 0.05 0.70 ± 0.04 0.71 ± 0.06
记忆项外周 0.88 ± 0.03 0.70 ± 0.04 0.69 ± 0.05

表3实验2不同条件下视觉工作记忆任务的正确率(M ± 95%CI)
Flanker任务
呈现位置
负载类型
基线 高精度负载 高容量负载
记忆项内部 0.87 ± 0.05 0.70 ± 0.04 0.71 ± 0.06
记忆项外周 0.88 ± 0.03 0.70 ± 0.04 0.69 ± 0.05


表4实验2各条件下Flanker任务的反应时(M ± 95%CI, 单位:ms)
Flanker任务呈现位置 负载类型
基线 高精度负载 高容量负载
内部呈现
一致 642.05 ± 64.53 631.69 ± 101.50 628.19 ± 64.11
不一致 863.29 ± 93.22 796.88 ± 146.23 889.09 ± 100.91
干扰效应 221.23 ± 85.20 165.19 ± 77.78 260.90 ± 88.62
外周呈现
一致 770.90 ± 127.25 785.44 ± 108.78 785.62 ± 80.17
不一致 967.32 ± 123.59 927.95 ± 103.68 920.97 ± 92.66
干扰效应 196.42 ± 101.21 142.51 ± 98.74 135.35 ± 92.26

表4实验2各条件下Flanker任务的反应时(M ± 95%CI, 单位:ms)
Flanker任务呈现位置 负载类型
基线 高精度负载 高容量负载
内部呈现
一致 642.05 ± 64.53 631.69 ± 101.50 628.19 ± 64.11
不一致 863.29 ± 93.22 796.88 ± 146.23 889.09 ± 100.91
干扰效应 221.23 ± 85.20 165.19 ± 77.78 260.90 ± 88.62
外周呈现
一致 770.90 ± 127.25 785.44 ± 108.78 785.62 ± 80.17
不一致 967.32 ± 123.59 927.95 ± 103.68 920.97 ± 92.66
干扰效应 196.42 ± 101.21 142.51 ± 98.74 135.35 ± 92.26



图4实验2各条件下的干扰效应(竖线表示95%置信区间, *p < 0.05)
图4实验2各条件下的干扰效应(竖线表示95%置信区间, *p < 0.05)



图5实验3基线条件下实验流程图(提示被试注意Navon刺激的大字母, 图中大字母为H, 小字母为S)
图5实验3基线条件下实验流程图(提示被试注意Navon刺激的大字母, 图中大字母为H, 小字母为S)


表5实验3不同条件下视觉工作记忆任务的正确率(M ± 95%CI)
注意指向 负载类型
基线 高精度负载 高容量负载
局部 0.87 ± 0.04 0.71 ± 0.02 0.69 ± 0.04
整体 0.86 ± 0.05 0.67 ± 0.04 0.63 ± 0.05

表5实验3不同条件下视觉工作记忆任务的正确率(M ± 95%CI)
注意指向 负载类型
基线 高精度负载 高容量负载
局部 0.87 ± 0.04 0.71 ± 0.02 0.69 ± 0.04
整体 0.86 ± 0.05 0.67 ± 0.04 0.63 ± 0.05


表6实验3各条件下Flanker任务的反应时(M ± 95%CI, 单位:ms)
注意指向 负载类型
基线 高精度负载 高容量负载
注意整体
一致 907.99 ± 71.96 897.81 ± 77.21 908.92 ± 79.46
不一致 974.71 ± 86.15 919.36 ± 84.91 1028.63 ± 76.83
干扰效应 66.72 ± 29.40 21.55 ± 50.08 119.71 ± 50.91
注意局部
一致 829.59 ± 74.34 868.44 ± 78.00 817.07 ± 80.56
不一致 897.95 ± 93.43 991.84 ± 72.87 854.34 ± 81.65
干扰效应 68.36 ± 29.29 123.40 ± 41.64 37.27 ± 26.99

表6实验3各条件下Flanker任务的反应时(M ± 95%CI, 单位:ms)
注意指向 负载类型
基线 高精度负载 高容量负载
注意整体
一致 907.99 ± 71.96 897.81 ± 77.21 908.92 ± 79.46
不一致 974.71 ± 86.15 919.36 ± 84.91 1028.63 ± 76.83
干扰效应 66.72 ± 29.40 21.55 ± 50.08 119.71 ± 50.91
注意局部
一致 829.59 ± 74.34 868.44 ± 78.00 817.07 ± 80.56
不一致 897.95 ± 93.43 991.84 ± 72.87 854.34 ± 81.65
干扰效应 68.36 ± 29.29 123.40 ± 41.64 37.27 ± 26.99



图6实验3各条件下的干扰效应(竖线表示95%置信区间, **p < 0.01)
图6实验3各条件下的干扰效应(竖线表示95%置信区间, **p < 0.01)



图7实验4单一试次流程图(在基线条件下, Flanker任务的目标字母为N, 视觉工作记忆任务的检测项和记忆项不一致)
图7实验4单一试次流程图(在基线条件下, Flanker任务的目标字母为N, 视觉工作记忆任务的检测项和记忆项不一致)


表7实验4各条件下Flanker任务的反应时(M ± 95%CI, 单位:ms)
负载类型
基线 高精度负载 高容量负载
一致 487.71 ± 90.44 485.22 ± 74.02 488.46 ± 81.16
不一致 712.31 ± 132.23 671.48 ± 114.16 752.62 ± 116.53
干扰效应 224.60 ± 66.70 186.26 ± 72.93 264.16 ± 67.08

表7实验4各条件下Flanker任务的反应时(M ± 95%CI, 单位:ms)
负载类型
基线 高精度负载 高容量负载
一致 487.71 ± 90.44 485.22 ± 74.02 488.46 ± 81.16
不一致 712.31 ± 132.23 671.48 ± 114.16 752.62 ± 116.53
干扰效应 224.60 ± 66.70 186.26 ± 72.93 264.16 ± 67.08



图8实验4各条件下Fz、FCz、Cz点的N2成分总平均波形图
图8实验4各条件下Fz、FCz、Cz点的N2成分总平均波形图



图9实验4各条件下N2波幅值(竖线表示95%置信区间, *p < 0.05)
图9实验4各条件下N2波幅值(竖线表示95%置信区间, *p < 0.05)







1 Ahmed, L., & de Fockert, J. W . ( 2012). Working memory load can both improve and impair selective attention: Evidence from the Navon paradigm. Attention, Perception, & Psychophysics, 74( 7), 1397-1405.
2 Baddeley, A. ( 1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology Section A, 49( 1), 5-28.
3 Baddeley, A. ( 2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1-29.
4 Belopolsky, A. V., & Theeuwes, J . ( 2010). No capture outside the attentional window. Vision Research, 50( 23), 2543-2550.
5 Belopolsky A. V., Zwaan L., Theeuwes J., & Kramer A. F . ( 2007). The size of an attentional window modulates attentional capture by color singletons. Psychonomic Bulletin & Review, 14( 5), 934-938.
6 Bettencourt, K. C., & Xu, Y . ( 2016). Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nature Neuroscience, 19( 1), 150-157.
7 Cohen, J. ( 1992). A power primer. Psychological Bulletin, 112( 1), 155-159.
8 de Fockert J. W., Rees G., Frith C. D., & Lavie N . ( 2001). The role of working memory in visual selective attention. Science, 291( 5509), 1803-1806.
9 Ester E. F., Anderson D. E., Serences J. T., & Awh E . ( 2013). A neural measure of precision in visual working memory. Journal of Cognitive Neuroscience, 25( 5), 754-761.
10 Ester E. F., Serences J. T., & Awh E . ( 2009). Spatially global representations in human primary visual cortex during working memory maintenance. Journal of Neuroscience, 29( 48), 15258-15265.
11 Forster S. E., Carter C. S., Cohen J. D., & Cho R. Y . ( 2011). Parametric manipulation of the conflict signal and control-state adaptation. Journal of Cognitive Neuroscience, 23( 4), 923-935.
12 Gil-Gómez de Liaño B., Stablum F., & Umiltà C . ( 2016). Can concurrent memory load reduce distraction? A replication study and beyond. Journal of Experimental Psychology: General, 145( 1), e1-e12.
13 Gronau N., Cohen A., & Ben-Shakhar G . ( 2003). Dissociations of personally significant and task-relevant distractors inside and outside the focus of attention: A combined behavioral and psychophysiological study. Journal of Experimental Psychology: General, 132( 4), 512-529.
14 Harrison, S. A., & Tong, F . ( 2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458, 632-635.
15 Heil M., Osman A., Wiegelmann J., Rolke B., & Hennighausen E . ( 2000). N200 in the Eriksen-task: Inhibitory executive processes?. Journal of Psychophysiology, 14( 4), 218-225.
16 Kanske, P., & Kotz, S. A . ( 2010). Modulation of early conflict processing: N200 responses to emotional words in a flanker task. Neuropsychologia, 48( 12), 3661-3664.
17 Konstantinou N., Beal E., King J-R., & Lavie N . ( 2014). Working memory load and distraction: Dissociable effects of visual maintenance and cognitive control. Attention, Perception, & Psychophysics, 76( 7), 1985-1997.
18 Kopp B., Rist F., & Mattler, U. W. E. ( 1996). N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology, 33( 3), 282-294.
19 Lavie, N. ( 1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology, 21( 3), 451-468.
20 Lavie, N. ( 2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9( 2), 75-82.
21 Lavie, N., & de Fockert, J. W . ( 2005). The role of working memory in attentional capture. Psychonomic Bulletin & Review, 12( 4), 669-674.
22 Lavie N., Hirst A., de Fockert J. W., & Viding E . ( 2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133( 3), 339-354.
23 Lavie, N., & Tsal, Y . ( 1994). Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56( 2), 183-197.
24 Luck, S. J., & Vogel, E. K . ( 2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17( 8), 391-400.
25 Ma W. J., Husain M., & Bays P. M . ( 2014). Changing concepts of working memory. Nature Neuroscience, 17( 3), 347-356.
26 Mitchell, D. J., & Cusack, R . ( 2008). Flexible, capacity- limited activity of posterior parietal cortex in perceptual as well as visual short-term memory tasks. Cerebral Cortex, 18( 8), 1788-1798.
27 Munneke J., Heslenfeld D. J., & Theeuwes J . ( 2010). Spatial working memory effects in early visual cortex. Brain and Cognition, 72( 3), 368-377.
28 Navon, D. ( 1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9( 3), 353-383.
29 Norman, D.A., & Shallice, T . ( 1986). Attention to Action. In Davidson, R. J., Schwartz, G. E., Shapiro, D. (Eds), Consciousness and Self-Regulation (pp. 1-18). Boston, MA: Springer.
30 Pasternak, T., & Greenlee, M. W . ( 2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6( 2), 97-107.
31 Qi S., Zeng Q., Luo Y., Duan H., Ding C., Hu W., & Li H . ( 2014). Impact of working memory load on cognitive control in trait anxiety: An ERP study. PloS ONE, 9( 11), 1-10.
32 Repovš, G., & Baddeley, A . ( 2006). The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience, 139( 1), 5-21.
33 Roper, Z. J., & Vecera, S. P . ( 2014). Visual short-term memory load strengthens selective attention. Psychonomic Bulletin & Review, 21( 2), 549-556.
34 Serences J. T., Ester E. F., Vogel E. K., & Awh E . ( 2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20( 2), 207-214.
35 Stins J. F., Vosse S., Boomsma D. I., & de Geus, E. J. ( 2004). On the role of working memory in response interference. Perceptual and Motor Skills, 99( 3), 947-958.
36 Suchow J. W., Fougnie D., Brady T. F., & Alvarez G. A . ( 2014). Terms of the debate on the format and structure of visual memory. Attention, Perception, & Psychophysics, 76( 7), 2071-2079.
37 van Veen, V., & Carter, C. S . ( 2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior, 77( 4-5), 477-482.
38 Weber E. M. G., Hahn T., Hilger K., & Fiebach C. J . ( 2017). Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory. Neuroimage, 146, 404-418.
39 Weber E. M. G., Peters B., Hahn T., Bledowski C., & Fiebach C. J . ( 2016). Superior intraparietal sulcus controls the variability of visual working memory precision. Journal of Neuroscience, 36( 20), 5623-5635.
40 Xu, Y., & Chun, M. M . ( 2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440( 7080), 91-95.
41 Zhang, W., & Luck, S. J . ( 2008). Discrete fixed-resolution representations in visual working memory. Nature, 453( 7192), 233-235.
42 Zhang, W., & Luck, S. J . ( 2015). Opposite effects of capacity load and resolution load on distractor processing. Journal of Experimental Psychology: Human Perception and Performance, 41( 1), 22-27.




[1]陈杰, 伍可, 史宇鹏, 艾小青. 特质性自我构念与内外群体疼痛共情的关系: 来自事件相关电位的证据[J]. 心理学报, 2021, 53(6): 629-638.
[2]叶超雄, 胡中华, 梁腾飞, 张加峰, 许茜如, 刘强. 视觉工作记忆回溯线索效应的产生机制:认知阶段分离[J]. 心理学报, 2020, 52(4): 399-413.
[3]罗禹, 念靖晴, 鲍未, 张静静, 赵守盈, 潘运, 许爽, 张禹. 急性应激损害对威胁刺激的注意解除[J]. 心理学报, 2020, 52(1): 26-37.
[4]张頔,郝仁宁,刘强. 注意范围分布对视觉工作记忆巩固过程的影响[J]. 心理学报, 2019, 51(7): 772-780.
[5]王思思, 库逸轩. 右侧背外侧前额叶在视觉工作记忆中的因果性作用[J]. 心理学报, 2018, 50(7): 727-738.
[6]付超, 张振, 何金洲, 黄四林, 仇剑崟, 王益文. 普遍信任博弈决策的动态过程 ——来自脑电时频分析的证据[J]. 心理学报, 2018, 50(3): 317-326.
[7]王静, 薛成波, 刘强. 客体同维度特征的视觉工作记忆存储机制[J]. 心理学报, 2018, 50(2): 176-185.
[8]黄羽商, 曹立人. 基于空间方位信息的构型对视觉工作记忆绩效的影响[J]. 心理学报, 2018, 50(11): 1222-1234.
[9]李腾飞, 马 楠, 胡中华, 刘 强. 空间距离对视觉工作记忆巩固的影响[J]. 心理学报, 2017, 49(6): 711-722.
[10]程家萍;罗跃嘉;崔芳. 认知负荷对疼痛共情的影响:来自ERP研究的证据[J]. 心理学报, 2017, 49(5): 622-630.
[11]范伟;钟毅平;杨子鹿;李琎;欧阳益; 蔡荣华; 李慧云 ;傅小兰 . 外倾个体的自我参照加工程度效应[J]. 心理学报, 2016, 48(8): 1002-1012.
[12]胡艳梅;张明. 基于记忆的注意捕获和注意抑制效应:ERP证据[J]. 心理学报, 2016, 48(1): 12-21.
[13]薛成波;叶超雄;张引;刘强. 视觉工作记忆中特征绑定关系的记忆机制[J]. 心理学报, 2015, 47(7): 851-858.
[14]黎翠红;何旭;郭春彦. 多特征刺激在视觉工作记忆中的存储模式[J]. 心理学报, 2015, 47(6): 734-745.
[15]张微;周兵平;臧玲;莫书亮. 网络成瘾倾向者在视觉工作记忆引导下的注意捕获[J]. 心理学报, 2015, 47(10): 1223-1234.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4436
相关话题/实验 工作 视觉 干扰 心理