删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

9~10岁儿童和成人的一致性序列效应

本站小编 Free考研考试/2022-01-01

赵鑫1,2, 贾丽娜3, 周爱保1,2()
1 甘肃省行为与心理健康重点实验室
2 西北师范大学心理学院, 兰州 730070
3 天津师范大学心理与行为研究院, 天津 300074
收稿日期:2019-02-12出版日期:2019-08-25发布日期:2019-06-24
通讯作者:周爱保E-mail:zhouab@nwnu.edu.cn

基金资助:* 国家自然科学基金资助(31560283)

Congruency sequence effects in 9~10-year-old children and young adults

ZHAO Xin1,2, JIA Lina3, ZHOU Aibao1,2()
1 Key Laboratory of Behavioral and Mental Health of Gansu Province
2 School of Psychology, Northwest Normal University, Lanzhou 730070, China
3 Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300074, China
Received:2019-02-12Online:2019-08-25Published:2019-06-24
Contact:ZHOU Aibao E-mail:zhouab@nwnu.edu.cn






摘要/Abstract


摘要: 一致性序列效应是指个体根据前一情境中的冲突信息, 灵活适应当前环境的能力。研究选取9~10岁的儿童和18~25岁的成人为被试, 采用色-词Stroop任务和Stroop与Flanker刺激混合的任务, 在控制重复启动的影响后, 考察一致性序列效应在不同任务中的年龄差异。结果发现, 在不同的任务中, 儿童和成人均表现出显著的一致性序列效应, 且一致性序列效应的大小不存在显著差异。研究结果表明, 冲突适应过程涉及更高级的加工过程, 9~10岁的儿童已具备类似成人的、更一般化的冲突适应能力。



图1实验流程图(左:任务1; 右:任务2)
图1实验流程图(左:任务1; 右:任务2)



图2成人和儿童在前一试次(一致vs.不一致)和当前试次(一致vs.不一致)的平均反应时和标准误(左); 平均正确率和标准误(右)
图2成人和儿童在前一试次(一致vs.不一致)和当前试次(一致vs.不一致)的平均反应时和标准误(左); 平均正确率和标准误(右)


表1任务1和任务2的统计分析结果
任务和因变量 因素 F p ηp2
任务1
反应时(ms)
年龄组 35.28 <0.001*** 0.35
前一试次一致性 0.07 0.79 0.00
当前试次一致性 64.05 <0.001*** 0.50
前一试次×当前试次 103.21 <0.001*** 0.61
年龄组×前一试次 0.02 89 0.00
年龄组×当前试次 0.10 0.75 0.00
年龄组×前一试次×当前试次 3.02 0.09 0.04
任务1
正确率
年龄组 34.44 <0.001*** 0.35
前一试次一致性 26.06 <0.001*** 0.29
当前试次一致性 26.20 <0.001*** 0.29
前一试次×当前试次 50.37 <0.001*** 0.44
年龄组×前一试次 5.24 0.03* 0.08
年龄组×当前试次 0.50 0.48 0.01
年龄组×前一试次×当前试次 0.09 0.77 0.00
任务2
反应时(ms)
年龄组 25.71 <0.001*** 0.29
任务转换(TT) 22.04 <0.001*** 0.26
前一试次一致性 15.17 <0.001*** 0.19
当前试次一致性 189.39 <0.001*** 0.75
年龄组×TT 0.46 0.50 0.01
年龄组×前一试次 6.51 0.01* 0.09
年龄组×当前试次 1.67 0.20 0.03
TT×前一试次 6.50 0.01* 0.09
TT×当前试次 64.66 <0.001*** 0.50
前一试次×当前试次 25.58 <0.001*** 0.29
年龄组×TT×前一试次 0.02 0.89 0.00
年龄组×TT×当前试次 9.12 0.004** 0.13
年龄组×前一试次×当前试次 0.01 0.91 0.00
TT×前一试次×当前试次 1.38 0.25 0.02
年龄组×TT×前一试次×当前试次 2.11 0.15 0.03
任务2
正确率
年龄组 50.14 <0.001+ 0.44
任务转换(TT) 77.27 <0.001*** 0.55
前一试次一致性 0.03 0.87 0.00
当前试次一致性 60.54 <0.001*** 0.49
TT×前一试次 0.77 0.38 0.01
TT×当前试次 0.18 0.68 0.00
TT×前一试次×当前试次 0.28 0.60 0.00
前一试次×当前试次 13.44 0.001** 0.18
年龄组×前一试次 0.01 0.92 0.00
年龄组×当前试次 13.89 <0.001*** 0.18
年龄组×TT 18.62 <0.001*** 0.23
年龄组×TT×前一试次 1.26 0.27 0.02
年龄组×TT×当前试次 0.18 0.68 0.00
年龄组×前一试次×当前试次 0.99 0.32 0.02
年龄组×TT×前一试次×当前试次 0.21 0.65 0.00

表1任务1和任务2的统计分析结果
任务和因变量 因素 F p ηp2
任务1
反应时(ms)
年龄组 35.28 <0.001*** 0.35
前一试次一致性 0.07 0.79 0.00
当前试次一致性 64.05 <0.001*** 0.50
前一试次×当前试次 103.21 <0.001*** 0.61
年龄组×前一试次 0.02 89 0.00
年龄组×当前试次 0.10 0.75 0.00
年龄组×前一试次×当前试次 3.02 0.09 0.04
任务1
正确率
年龄组 34.44 <0.001*** 0.35
前一试次一致性 26.06 <0.001*** 0.29
当前试次一致性 26.20 <0.001*** 0.29
前一试次×当前试次 50.37 <0.001*** 0.44
年龄组×前一试次 5.24 0.03* 0.08
年龄组×当前试次 0.50 0.48 0.01
年龄组×前一试次×当前试次 0.09 0.77 0.00
任务2
反应时(ms)
年龄组 25.71 <0.001*** 0.29
任务转换(TT) 22.04 <0.001*** 0.26
前一试次一致性 15.17 <0.001*** 0.19
当前试次一致性 189.39 <0.001*** 0.75
年龄组×TT 0.46 0.50 0.01
年龄组×前一试次 6.51 0.01* 0.09
年龄组×当前试次 1.67 0.20 0.03
TT×前一试次 6.50 0.01* 0.09
TT×当前试次 64.66 <0.001*** 0.50
前一试次×当前试次 25.58 <0.001*** 0.29
年龄组×TT×前一试次 0.02 0.89 0.00
年龄组×TT×当前试次 9.12 0.004** 0.13
年龄组×前一试次×当前试次 0.01 0.91 0.00
TT×前一试次×当前试次 1.38 0.25 0.02
年龄组×TT×前一试次×当前试次 2.11 0.15 0.03
任务2
正确率
年龄组 50.14 <0.001+ 0.44
任务转换(TT) 77.27 <0.001*** 0.55
前一试次一致性 0.03 0.87 0.00
当前试次一致性 60.54 <0.001*** 0.49
TT×前一试次 0.77 0.38 0.01
TT×当前试次 0.18 0.68 0.00
TT×前一试次×当前试次 0.28 0.60 0.00
前一试次×当前试次 13.44 0.001** 0.18
年龄组×前一试次 0.01 0.92 0.00
年龄组×当前试次 13.89 <0.001*** 0.18
年龄组×TT 18.62 <0.001*** 0.23
年龄组×TT×前一试次 1.26 0.27 0.02
年龄组×TT×当前试次 0.18 0.68 0.00
年龄组×前一试次×当前试次 0.99 0.32 0.02
年龄组×TT×前一试次×当前试次 0.21 0.65 0.00



图3Stroop→Flanker转换中, 不同年龄组在前一试次(一致vs.不一致)和当前试次(一致vs.不一致)的平均反应时和标准误(左上); 平均正确率和标准误(左下); Flanker→Stroop转换中, 不同年龄组在前一试次(一致vs.不一致)和当前试次(一致vs.不一致)的平均反应时和标准误(右上); 平均正确率和标准误(右下)
图3Stroop→Flanker转换中, 不同年龄组在前一试次(一致vs.不一致)和当前试次(一致vs.不一致)的平均反应时和标准误(左上); 平均正确率和标准误(左下); Flanker→Stroop转换中, 不同年龄组在前一试次(一致vs.不一致)和当前试次(一致vs.不一致)的平均反应时和标准误(右上); 平均正确率和标准误(右下)







[1] Adleman N. E., Menon V., Blasey C. M., White C. D., Warsofsky I. S., Glover G. H., & Reiss A. L . ( 2002). A Developmental fMRI Study of the Stroop Color-Word Task. NeuroImage, 16(1), 61-75.
[2] Ambrosi S., Lemaire P., & Blaye A . ( 2016). Do young children modulate their cognitive control? Sequential congruency effects across three conflict tasks in 5-to-6 year olds. Experimental Psychology , 63(2), 117-126.
[3] Benikos N., Johnstone S. J., & Roodenrys S. J . ( 2013). Varying task difficulty in the Go/Nogo task: The effects of inhibitory control, arousal, and perceived effort on ERP components. International Journal of Psychophysiology, 87(3), 262-272.
[4] Botvinick M. M., Braver T. S., Barch D. M., Carter C. S., & Cohen J. D . ( 2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624-652.
[5] Braem S., Abrahamse E. L., Duthoo W., & Notebaert W . ( 2014). What determines the specificity of conflict adaptation? A review, critical analysis and proposed synthesis. Frontiers in Psychology, 5, 1134.
[6] Brocki K.C., & Bohlin G. , ( 2004). Executive functions in children aged 6 to 13: A dimensional and developmental study. Developmental Neuropsychology, 26(2), 571-593.
[7] Cao J., Wang S. H., Ren Y. L., Zhang Y. L., Cai J., Tu W. J., … Xia Y . ( 2013). Interference control in 6-11 year-old children with and without ADHD: Behavioral and ERP study. International Journal of Developmental Neuroscience, 31(5), 342-349.
[8] Cragg L., . ( 2016). The development of stimulus and response interference control in midchildhood. Developmental Psychology, 52(2), 242-252.
[9] Diamond A., . ( 2013). Executive functions. Annual Review of Psychology, 64(1), 135-168.
[10] Duthoo W., Abrahamse E. L., Braem S., Boehler C. N., & Notebaert W . ( 2014 b). The heterogeneous world of congruency sequence effects: An update. Frontiers in Psychology, 5, 1001.
[11] Egner T., & Hirsch J. , ( 2005). The neural correlates and functional integration of cognitive control in a Stroop task. NeuroImage, 24(2), 539-547.
[12] Erb C. D., Moher J., Song J.-H., & Sobel D. M . ( 2018). Reach tracking reveals dissociable processes underlying inhibitory control in 5- to 10-year-olds and adults. Developmental Science, 21:e12523.
[13] Eriksen A., &Eriksen C.W. . ( 1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 64(1), 143-149.
[14] Freitas A. L., Bahar M., Yang S., & Banai R . ( 2007). Contextual adjustments in cognitive control across tasks. Psychological Science 18(12), 1040-1043.
[15] Funes M. J., Lupiáñez J., & Humphreys G . ( 2010). Analyzing the generality of conflict adaptation effects. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 147-161.
[16] Goldfarb L., Aisenberg D., & Henik A . ( 2011). Think the thought, walk the walk – Social priming reduces the Stroop effect. Cognition, 118(2), 193-200.
[17] Gratton G., Coles M. G. H., & Donchin E . ( 1992). Optimizing the use of information: strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480-506.
[18] Hommel B., Proctor R. W., & Vu K-P . ( 2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68(1), 1-17.
[19] Iani C., Stella G., & Rubichi S . ( 2014). Response inhibition and adaptations to response conflict in 6- to 8-year-old children: Evidence from the Simon effect. Attention, Perception, & Psychophysics, 76(4), 1234-1241.
[20] Jiménez, L., & Méndez , A. ( 2013). It is not what you expect: dissociating conflict adaptation from expectancies in a stroop task. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 271-284.
[21] Kerns, J. G . ( 2006). Anterior cingulate and prefrontal cortex activity in an fMRI study of trial-to-trial adjustments on the simon task. Neuroimage, 33(1), 399-405.
[22] Kray J., Karbach J., & Blaye A . ( 2012). The influence of stimulus-set size on developmental changes in cognitive control and conflict adaptation. Acta Psychologica, 140(2), 119-128.
[23] Lamers, M. J. M., & Roelofs , A. ( 2011). Attentional control adjustments in Eriksen and Stroop task performance can be independent of response conflict. The Quarterly Journal of Experimental Psychology, 64(6), 1056-1081.
[24] Larson M. J., Clawson A., Clayson P. E., & South M . ( 2012). Cognitive control and conflict adaptation similarities in children and adults. Developmental Neuropsychology 37(4), 343-357.
[25] Larson M. J., Kaufman D. A. S., & Perlstein W. M . ( 2009). Neural time course of conflict adaptation effects on the stroop task. Neuropsychologia, 47(3), 663-670.
[26] Luna B., Garver K. E., Urban T. A., Lazar N. A., & Sweeney J. A . ( 2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75(5), 1357-1372.
[27] Luna B, & Sweeney J.A . ( 2004). The emergence of collaborative brain function: fMRI studies of the development of response inhibition. Annals of the New York Academy of Sciences, 1021(1), 296-309.
[28] Lustig C., Hasher L., & Tonev S. T . ( 2006). Distraction as a determinant of processing speed. Psychonomic Bulletin & Review, 13(4), 619-625.
[29] MacLeod C.M . ( 1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163-203.
[30] Mayr U., Awh E., & Laurey P . ( 2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450-452.
[31] Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., & Wager T. D . ( 2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100.
[32] Nieuwenhuis S., Stins J. F., Posthuma D., Polderman T. J. C., Boomsma D. I., & de Geus E. J. ., ( 2006). Accounting for sequential trial effects in the flanker task: Conflict adaptation or associative priming? Memory & Cognition, 34(6), 1260-1272.
[33] Rueda M. R., Fan J., McCandliss B. D., Halparin J. D., Gruber D. B., Lercari L. P., & Posner M. I . ( 2004). Development of attentional networks in childhood. Neuropsychologia, 42(8), 1029-1040.
[34] Stins J. F., Polderman J. C. T., Boomsma D. I., & de Geus E. J. C. ., ( 2007). Conditional accuracy in response interference tasks: evidence from the Eriksen flanker task and the spatial conflict task. Advances in Cognitive Psychology, 3(3), 409-417.
[35] Titz C., & Karbach J. , ( 2014). Working memory and executive functions: Effects of training on academic achievement. Psychological Research, 78(6), 852-868.
[36] Waxer M., & Morton J.B. . ( 2011). The development of future-oriented control: An electrophysiological investigation. NeuroImage, 56(3), 1648-1654.
[37] Wilk H. A., Ezekiel F., & Morton J. B . ( 2012). Brain regions associated with moment-to-moment adjustments in control and stable task-set maintenance. NeuroImage, 59(2), 1960-1967.
[38] Wilk H.A., & Morton J.B . ( 2012). Developmental changes in patterns of brain activity associated with moment-to- moment adjustments in control. NeuroImage, 63(1), 475-484.
[39] Zhao X., Chen L., & Maes J. H. R . ( 2018). Training and transfer effects of response inhibition training in children and adults. Developmental Science, 21, e12511.
[40] Zhao X., & Jia L. , ( 2018). Training and transfer effects of interference control training in children and young adults. Psychological Research, in press.




[1]罗婷, 邱茹依, 陈斌, 傅世敏. 无意识信息的刺激表征及其时间特性[J]. 心理学报, 2018, 50(5): 473-482.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4488
相关话题/年龄组 序列 实验 心理 信息