删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

重复经颅磁刺激对轻度认知障碍的干预效果

本站小编 Free考研考试/2022-01-01

陈娟1, 何昊1,2, 杨丹丹1, 关青1,2()
1深圳大学脑疾病与认知科学研究中心
2深港脑科学创新研究院, 深圳 518060
收稿日期:2020-11-10出版日期:2021-11-15发布日期:2021-09-23
通讯作者:关青E-mail:guanqing@szu.edu.cn

基金资助:深圳市基础研究专项(自然科学基金)面上项目(JCYJ20190808121415365);广东省自然科学基金项目(2020A1515011394);国家自然科学基金面上项目(32071100);国家重点研发计划(2018YFC1315200)

Effects of repetitive transcranial magnetic stimulation on patients with mild cognitive impairment

CHEN Juan1, HE Hao1,2, YANG Dandan1, GUAN Qing1,2()
1Center for Brain Diseases and Cognitive Sciences, Shenzhen University
2Shenzhen-Hong Kong Institute of Brain Science - Shenzhen Fundamental Research Institutions, Shenzhen 518060, China
Received:2020-11-10Online:2021-11-15Published:2021-09-23
Contact:GUAN Qing E-mail:guanqing@szu.edu.cn






摘要/Abstract


摘要: 轻度认知障碍(mild cognitive impairment, MCI)是介于正常认知老化和老年痴呆的中间状态, 目前尚无有效的药物治疗方案。重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS)可通过诱导突触可塑性的改变来改善大脑的认知功能。对rTMS干预MCI认知功能的有效性及神经机制进行分析。未来研究应优化定位手段, 延长对干预效果的随访评估, 考察不同刺激参数和刺激靶区对干预有效性的影响, 以及结合脑成像技术来探索rTMS的干预机制。



图1文献筛选流程及结果
图1文献筛选流程及结果



图2纳入研究的偏倚风险比例
图2纳入研究的偏倚风险比例


表1纳入研究的基本信息
作者(年份) 样本量 刺激区域 频率, 强度(RMT),
总脉冲数/次
刺激疗程 定位方法 结局指标 所属认知域
Anderkova et al.,
2015
20 额下回, 颞上回 10 Hz, 90%, 2250 1次/天, 2天 神经导航 1, 2, 3 注意和认知加工速度
Eliasova et al.,
2014
10 右额下回 10 Hz, 90%, 2250 1次/天, 2天 神经导航 1, 2, 3, 28 注意和认知加工速度, 执行功能
Taylor et al., 2019 99 背外侧前额叶, 顶叶 10 Hz, 120%, 4000 1次/天, 20天 神经导航 1, 2, 11, 17, 18, 27 执行功能
Koch et al., 2018 14 楔前叶 20 Hz, 100%, 1400 1次/天, 5天/周, 2周 神经导航 7, 9 21, 22 情景记忆
Marra et al., 2015 34 背外侧前额叶 10 Hz, 110%, 2000 1次/天, 5天/周, 2周 5 cm规则 20, 23, 24, 25 情景记忆
温秀云 等, 2018 43 左背外侧前额叶 10 Hz, 80%, 400 1次/天, 5天/周, 4周 17, 23 情景记忆
Turriziani et al.,
2012
8 背外侧前额叶 1 Hz, 90% /50 Hz,
80%, 600
共2次, 每次间隔
3周
神经导航 5 长时记忆
祝本菊 等, 2012 24 前颞区 1 Hz, 80%, 600 1次/天, 5天/周, 6周 4 长时记忆
Cui et al., 2019 21 右背外侧前额叶 10 Hz, 90%, 1500 5天/周, 共2周 5 cm规则 1, 2, 7, 9, 19 短时记忆
Cotelli et al., 2012 1 左顶下小叶 20 Hz, 100%, 2000 5天/周, 2周 神经导航 1, 2, 6-16 联想记忆
Solé-Padullés
et al., 2006
9 前额叶 5 Hz, 80%, 500 10 s刺激+20 s休息,
共5分钟
26 联想记忆

表1纳入研究的基本信息
作者(年份) 样本量 刺激区域 频率, 强度(RMT),
总脉冲数/次
刺激疗程 定位方法 结局指标 所属认知域
Anderkova et al.,
2015
20 额下回, 颞上回 10 Hz, 90%, 2250 1次/天, 2天 神经导航 1, 2, 3 注意和认知加工速度
Eliasova et al.,
2014
10 右额下回 10 Hz, 90%, 2250 1次/天, 2天 神经导航 1, 2, 3, 28 注意和认知加工速度, 执行功能
Taylor et al., 2019 99 背外侧前额叶, 顶叶 10 Hz, 120%, 4000 1次/天, 20天 神经导航 1, 2, 11, 17, 18, 27 执行功能
Koch et al., 2018 14 楔前叶 20 Hz, 100%, 1400 1次/天, 5天/周, 2周 神经导航 7, 9 21, 22 情景记忆
Marra et al., 2015 34 背外侧前额叶 10 Hz, 110%, 2000 1次/天, 5天/周, 2周 5 cm规则 20, 23, 24, 25 情景记忆
温秀云 等, 2018 43 左背外侧前额叶 10 Hz, 80%, 400 1次/天, 5天/周, 4周 17, 23 情景记忆
Turriziani et al.,
2012
8 背外侧前额叶 1 Hz, 90% /50 Hz,
80%, 600
共2次, 每次间隔
3周
神经导航 5 长时记忆
祝本菊 等, 2012 24 前颞区 1 Hz, 80%, 600 1次/天, 5天/周, 6周 4 长时记忆
Cui et al., 2019 21 右背外侧前额叶 10 Hz, 90%, 1500 5天/周, 共2周 5 cm规则 1, 2, 7, 9, 19 短时记忆
Cotelli et al., 2012 1 左顶下小叶 20 Hz, 100%, 2000 5天/周, 2周 神经导航 1, 2, 6-16 联想记忆
Solé-Padullés
et al., 2006
9 前额叶 5 Hz, 80%, 500 10 s刺激+20 s休息,
共5分钟
26 联想记忆







[1] 陶雪琴, 廖雄, 李梦倩, 王乃博, 李兰, 杨晨辉, 吴磊. (2016). 社区老年人轻度认知功能障碍的流行病学调查. 中国老年学杂志, 36(13), 3283-3286.
[2] 温秀云, 曹雪丽, 邱国荣, 窦祖林, 陈尚杰. (2018). 重复经颅磁刺激对遗忘型轻度认知障碍的影响. 中国老年学杂志, 38(7), 1662-1663.
[3] 张惠玲, 钟冬灵, 李涓, 刘勇国, 金荣疆. (2020). 中国老年轻度认知障碍患病率的系统评价. 中国循证医学杂志, 20(1), 17-25.
[4] 祝本菊, 姜美娟, 陶华英. (2012). 重复经颅磁刺激对不同类型轻度认知障碍的干预作用. 中国老年学杂志, 32(7), 1366-1368.
[5] Ahdab, R., Ayache, S. S., Brugières, P., Goujon, C., & Lefaucheur, J. P. (2010). Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression. Neurophysiologie Clinique/ Clinical Neurophysiology, 40(1), 27-36.
[6] Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., ... Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 270-279.
doi: 10.1016/j.jalz.2011.03.008URL
[7] Anderkova, L., Eliasova, I., Marecek, R., Janousova, E., & Rektorova, I. (2015). Distinct pattern of gray matter atrophy in mild Alzheimer's disease impacts on cognitive outcomes of noninvasive brain stimulation. Journal of Alzheimer's Disease, 48(1), 251-260.
doi: 10.3233/JAD-150067pmid: 26401945
[8] Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., ... Gabrieli, J. D. (2004). Neural systems underlying the suppression of unwanted memories. Science, 303(5655), 232-235.
pmid: 14716015
[9] Angius, L., Santarnecchi, E., Pascual-Leone, A., & Marcora, S. M. (2019). Transcranial direct current stimulation over the left dorsolateral prefrontal cortex improves inhibitory control and endurance performance in healthy individuals. Neuroscience, 419, 34-45.
doi: S0306-4522(19)30634-7pmid: 31493549
[10] APA. (2000). Diagnostic and Statistical Manual of Mental Disorders. 4th Edition, Text Revision (DSM-IV-TR). American Psychological Association. Washington, DC.
[11] Baláž, M., Srovnalová, H., Rektorová, I., & Rektor, I. (2010). The effect of cortical repetitive transcranial magnetic stimulation on cognitive event-related potentials recorded in the subthalamic nucleus. Experimental Brain Research, 203, 317-327.
doi: 10.1007/s00221-010-2232-4URL
[12] Balconi, M. (2013). Dorsolateral prefrontal cortex, working memory and episodic memory processes: Insight through transcranial magnetic stimulation techniques. Neuroscience Bulletin, 29(3), 381-389.
doi: 10.1007/s12264-013-1309-zURL
[13] Beynel, L., Davis, S. W., Crowell, C. A., Hilbig, S. A., Lim, W., Nguyen, D., ... Appelbaum, L. G. (2019). Online repetitive transcranial magnetic stimulation during working memory in younger and older adults: A randomized within-subject comparison. PLoS ONE, 14(3), e0213707.
doi: 10.1371/journal.pone.0213707URL
[14] Bjekić, J., Čolić, M. V., Živanović, M., Milanović, S. D., & Filipović, S. R. (2019). Transcranial direct current stimulation (tDCS) over parietal cortex improves associative memory. Neurobiology of Learning and Memory, 157, 114-120.
doi: 10.1016/j.nlm.2018.12.007URL
[15] Blades, R., Jordan, S., Becerra, S., Eusebio, B., Heatwole, M., Iovine, J., ... Kuhn, T. (2020). Treating dissociative post-traumatic stress disorder presenting as a functional movement disorder with transcranial magnetic stimulation targeting the cingulate gyrus. Neurological Sciences, 41(8), 2275-2280.
doi: 10.1007/s10072-020-04433-2pmid: 32358703
[16] Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiolgy, 232(2), 331-356.
[17] Blumenfeld, R. S., & Ranganath, C. (2006). Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. The Journal of Neuroscience, 26(3), 916-925.
doi: 10.1523/JNEUROSCI.2353-05.2006URL
[18] Bortoletto, M., Veniero, D., Thut, G., & Miniussi, C. (2015). The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome. Neuroscience and Biobehavioral Reviews, 49, 114-124.
doi: 10.1016/j.neubiorev.2014.12.014pmid: 25541459
[19] Breton, A., Casey, D., & Arnaoutoglou, N. A. (2019). Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: Meta-analysis of diagnostic accuracy studies. International Journal of Geriatric Psychiatry, 34(2), 233-242.
doi: 10.1002/gps.v34.2URL
[20] Brier, M. R., Thomas, J. B., & Ances, B. M. (2014). Network dysfunction in Alzheimer's disease: Refining the disconnection hypothesis. Brain Connectivity, 4(5), 299-311.
doi: 10.1089/brain.2014.0236URL
[21] Brys, M., Fox, M. D., Agarwal, S., Biagioni, M., Dacpano, G., Kumar, P., ... Pascual-Leone, A. (2016). Multifocal repetitive TMS for motor and mood symptoms of Parkinson disease: A randomized trial. Neurology, 87(18), 1907-1915.
doi: 10.1212/WNL.0000000000003279URL
[22] Cai, C. T., Huang, C. X., Yang, C. H., Lu, H. J., Hong, X., Ren, F. J., ... Ng, E. (2020). Altered patterns of functional connectivity and causal connectivity in salience subnetwork of subjective cognitive decline and amnestic mild cognitive impairment. Frontiers in Neuroscience, 14, 288.
doi: 10.3389/fnins.2020.00288URL
[23] Caravaglios, G., Castro, G., Muscoso, E. G., Crivelli, D., & Balconi, M. (2018). Beta responses in healthy elderly and in patients with amnestic mild cognitive impairment during a task of temporal orientation of attention. Clinical EEG and Neuroscience, 49(4), 258-271.
doi: 10.1177/1550059416676144pmid: 27807013
[24] Chainay, H., & Gaubert, F. (2020). Affective and cognitive theory of mind in Alzheimer's disease: The role of executive functions. Journal of Clinical and Experimental Neuropsychology, 42(2), 371-386.
doi: 10.1080/13803395.2020.1726293URL
[25] Chand, G. B., Wu, J. J., Hajjar, I., & Qiu, D. Q. (2017). Interactions of the salience network and its subsystems with the default-mode and the central-executive networks in normal aging and mild cognitive impairment. Brain Connectivity, 7(7), 401-412.
doi: 10.1089/brain.2017.0509URL
[26] Chandra, A., Dervenoulas, G., Politis, M., & Alzheimer’s Disease Neuroimaging Initiative. (2019). Magnetic resonance imaging in Alzheimer's disease and mild cognitive impairment. Journal of Neurology, 266(6), 1293-1302.
doi: 10.1007/s00415-018-9016-3URL
[27] Charette, C., Blanchet, S., Maganaris, C. N., Baltzopoulos, V., & McFadyen, B. J. (2020). Community-dwelling older adults with mild cognitive impairments show subtle visual attention costs when descending stairs. Human Movement Science, 69, 102561.
doi: 10.1016/j.humov.2019.102561URL
[28] Chetélat, G., Desgranges, B., de la Sayette, V., Viader, F., Berkouk, K., Landeau, B., ... Eustache, F., (2003). Dissociating atrophy and hypometabolism impact on episodic memory in mild cognitive impairment. Brain, 126(9), 1955-1967.
doi: 10.1093/brain/awg196URL
[29] Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201-215.
[30] Cotelli, M., Calabria, M., Manenti, R., Rosini, S., Maioli, C., Zanetti, O., & Miniussi, C. (2012). Brain stimulation improves associative memory in an individual with amnestic mild cognitive impairment. Neurocase, 18(3), 217-223.
doi: 10.1080/13554794.2011.588176pmid: 21879993
[31] Cui, H. L., Ren, R. J., Lin, G. Z., Zou, Y., Jiang, L. J., Wei, Z. D., ... Wang, G. (2019). Repetitive transcranial magnetic stimulation induced hypoconnectivity within the default mode network yields cognitive improvements in amnestic mild cognitive impairment: A randomized controlled study. Journal of Alzheimer's Disease, 69(4), 1137-1151.
[32] Dannhauser, T. M., Walker, Z., Stevens, T., Lee, L., Seal, M., & Shergill, S. S. (2005). The functional anatomy of divided attention in amnestic mild cognitive impairment. Brain, 128(6), 1418-1427.
doi: 10.1093/brain/awh413URL
[33] D'Antonio, J., Simon-Pearson, L., Goldberg, T., Sneed, J. R., Rushia, S., Kerner, N., ... Devanand, D. (2019). Cognitive training and neuroplasticity in mild cognitive impairment (COG-IT): Protocol for a two-site, blinded, randomised, controlled treatment trial. BMJ Open, 9(8), e028536.
doi: 10.1136/bmjopen-2018-028536URL
[34] Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135-168.
doi: 10.1146/psych.2013.64.issue-1URL
[35] Di Lorenzo, F., Ponzo, V., Bonni, S., Motta, C., Negrao, P. C., Bozzali, M., ... Koch, G. (2016). Long-term potentiation-like cortical plasticity is disrupted in Alzheimer's disease patients independently from age of onset. Annals of Neurology, 80(2), 202-210.
doi: 10.1002/ana.v80.2URL
[36] Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99-105.
doi: 10.1016/j.tics.2008.01.001pmid: 18262825
[37] Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., ... Scheltens, P. (2007). Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. The Lancet. Neurology, 6(8), 734-746.
[38] Eliasova, I., Anderkova, L., Marecek, R., & Rektorova, I. (2014). Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer's disease: A pilot study. Journal of the Neurological Sciences, 346(1-2), 318-322.
doi: 10.1016/j.jns.2014.08.022URL
[39] Fernández, P. J., Campoy, G., García Santos, J. M., Antequera, M. M., García-Sevilla, J., Castillo, A., ... Fuentes, L. J. (2011). Is there a specific pattern of attention deficit in mild cognitive impairment with subcortical vascular features? Evidence from the attention network test. Dementia and Geriatric Cognitive Disorders, 31(4), 268-275.
doi: 10.1159/000327165pmid: 21508641
[40] Geng, Z., Wu, X. Q., Wang, L., Zhou, S. S., Tian, Y. H., Wang, K., & Wei, L. (2020). Reduced delayed reward selection by Alzheimer's disease and mild cognitive impairment patients during intertemporal decision-making. Journal of Clinical and Experimental Neuropsychology, 42(3), 298-306.
doi: 10.1080/13803395.2020.1711873pmid: 31914851
[41] Gilmore, A. W., Nelson, S. M., & McDermott, K. B. (2015). A parietal memory network revealed by multiple MRI methods. Trends in Cognitive Sciences, 19(9), 534-543.
doi: 10.1016/j.tics.2015.07.004pmid: 26254740
[42] Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. NeuroImage, 99, 180-190.
doi: 10.1016/j.neuroimage.2014.05.052pmid: 24862074
[43] Gour, N., Ranjeva, J. P., Ceccaldi, M., Confort-Gouny, S., Barbeau, E., Soulier, E., ... Felician, O. (2011). Basal functional connectivity within the anterior temporal network is associated with performance on declarative memory tasks. NeuroImage, 58(2), 687-697.
doi: 10.1016/j.neuroimage.2011.05.090URL
[44] Guillaume, S., Gay, A., Jaussent, I., Sigaud, T., Billard, S., Attal, J., ... Courtet, P. (2018). Improving decision-making and cognitive impulse control in bulimia nervosa by rTMS: An ancillary randomized controlled study. The International Journal of Eating Disorders, 51(9), 1103-1106.
doi: 10.1002/eat.v51.9URL
[45] He, H., Xu, P. F., Wu, T. T., Chen, Y. Q., Wang, J., Qiu, Y. H., ... Luo, Y. J. (2019). Reduced capacity of cognitive control in older adults with mild cognitive impairment. Journal of Alzheime's Disease, 71(1), 185-200.
[46] Higgins, J. L. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T. J., Page, M. J., & Welch, V. A. (2019). Cochrane handbook for systematic reviews of interventions. 2nd edition. Chichester (UK): John Wiley & Sons, Ltd.
[47] Hoppstädter, M., Baeuchl, C., Diener, C., Flor, H., & Meyer, P. (2015). Simultaneous EEG-fMRI reveals brain networks underlying recognition memory ERP old/new effects. NeuroImage, 116, 112-122.
doi: 10.1016/j.neuroimage.2015.05.026pmid: 25988228
[48] Horecka, K. M., Dulas, M. R., Schwarb, H., Lucas, H. D., Duff, M., & Cohen, N. J. (2018). Reconstructing relational information. Hippocampus, 28(2), 164-177.
doi: 10.1002/hipo.22819pmid: 29232494
[49] Kaboodvand, N., Bäckman, L., Nyberg, L., & Salami, A. (2018). The retrosplenial cortex: A memory gateway between the cortical default mode network and the medial temporal lobe. Human Brain Mapping, 39, 2020-2034.
doi: 10.1002/hbm.23983pmid: 29363256
[50] Keresztes, A., Kaiser, D., Kovács, G., & Racsmány, M. (2014). Testing promotes long-term learning via stabilizing activation patterns in a large network of brain areas. Cerebral Cortex, 24(11), 3025-3035.
doi: 10.1093/cercor/bht158URL
[51] Kim, S. H., Seo, S. W., Yoon, D. S., Chin, J., Lee, B. H., Cheong, H. K., ... Na, D. L. (2010). Comparison of neuropsychological and FDG-PET findings between early-versus late-onset mild cognitive impairment: A five-year longitudinal study. Dementia and Geriatric Cognitive Disorders, 29(3), 213-223.
doi: 10.1159/000278422URL
[52] Klekociuk, S. Z., & Summers, M. J. (2014). Lowered performance in working memory and attentional sub-processes are most prominent in multi-domain amnestic mild cognitive impairment subtypes. Psychogeriatrics: the official journal of the Japanese Psychogeriatric Society, 14(1), 63-71.
doi: 10.1111/psyg.2014.14.issue-1URL
[53] Koch, G., Bonni, S., Pellicciari, M. C., Casula, E. P., Mancini, M., Esposito, R., ... Bozzali, M. (2018). Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease. NeuroImage, 169, 302-311.
doi: 10.1016/j.neuroimage.2017.12.048URL
[54] Konkel, A., & Cohen, N. J. (2009). Relational memory and the hippocampus: Representations and methods. Frontiers in Neuroscience, 3(2), 166-174.
doi: 10.3389/neuro.01.023.2009pmid: 20011138
[55] Lage, C., Wiles, K., Shergill, S. S., & Tracy, D. K. (2016). A systematic review of the effects of low-frequency repetitive transcranial magnetic stimulation on cognition. Journal of Neural Transmission, 123(12), 1479-1490.
doi: 10.1007/s00702-016-1592-8URL
[56] Lefaucheur, J. P. (2019). Transcranial magnetic stimulation. Handbook of Clinical Neurology, 160, 559-580.
[57] Liang, P. P., Wang, Z. Q., Yang, Y. H., & Li, K. C. (2012). Three subsystems of the inferior parietal cortex are differently affected in mild cognitive impairment. Journal of Alzheimer’s Disease, 30(3), 475-487.
[58] Lisanby, S. H., Gutman, D., Luber, B., Schroeder, C., & Sackeim, H. A. (2001). Sham TMS: Intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biological Psychiatry, 49(5), 460-463.
pmid: 11274658
[59] Luber, B., Mcclintock, S. M., & Lisanby, S. H. (2013). Applications of transcranial magnetic stimulation and magnetic seizure therapy in the study and treatment of disorders related to cerebral aging. Dialogues in Clinical Neuroscience, 15(1), 87-98.
doi: 10.31887/DCNSURL
[60] Marián, M., Szőllősi, Á., & Racsmány, M. (2018). Anodal transcranial direct current stimulation of the right dorsolateral prefrontal cortex impairs long-term retention of reencountered memories. Cortex, 108, 80-91.
doi: 10.1016/j.cortex.2018.07.012URL
[61] Marra, H. L. D., Myczkowski, M. L., Memória, C. M., Arnaut, D., Ribeiro, P. L., Mansur, C. G. S., ... Marcolin, M. A. (2015). Transcranial magnetic stimulation to address mild cognitive impairment in the elderly: A randomized controlled study. Behavioural Neurology, 2015, 287843.
[62] McGough, E. L., Kelly, V. E., Weaver, K. E., Logsdon, R. G., McCurry, S. M., Pike, K. C., ... Teri, L. (2018). Limbic and basal ganglia neuroanatomical correlates of gait and executive function: Older adults with mild cognitive impairment and intact cognition. American Journal of Physical Medicine & Rehabilitation, 97(4), 229-235.
[63] Moll, K., Göbel, S. M., Gooch, D., Landerl, K., & Snowling, M. J. (2016). Cognitive risk factors for specific learning disorder: processing speed, temporal processing, and working memory. Journal of Learning Disabilities, 49(3), 272-281.
doi: 10.1177/0022219414547221URL
[64] Mueller, K. D., Hermann, B., Mecollari, J., & Turkstra, L. S. (2018). Connected speech and language in mild cognitive impairment and Alzheimer's disease: A review of picture description tasks. Journal of Clinical and Experimental Neuropsychology, 40(9), 917-939.
doi: 10.1080/13803395.2018.1446513URL
[65] Myczkowski, M. L., Fernandes, A., Moreno, M., Valiengo, L., Lafer, B., Moreno, R. A., ... Brunoni, A. R. (2018). Cognitive outcomes of TMS treatment in bipolar depression: Safety data from a randomized controlled trial. Journal of Affective Disorders, 235, 20-26.
doi: S0165-0327(17)32590-9pmid: 29631203
[66] Nadeau, S. E., McCoy, K. J. M., Crucian, G. P., Greer, R. A., Rossi, F., Bowers, D., ... Triggs, W. J. (2002). Cerebral blood flow changes in depressed patients after treatment with repetitive transcranial magnetic stimulation: Evidence of individual variability. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 15( 3), 159-175.
[67] Nardon, R., Brigo, F., Höller, Y., Sebastianelli, L., Versace, V., Saltuari, L., ... Trinka, E. (2017). Transcranial magnetic stimulation studies in complex regional pain syndrome type I: A review. Acta Neurologica Scandinavica, 137(2), 158-164.
doi: 10.1111/ane.2018.137.issue-2URL
[68] Nemeth, D., Janacsek, K., Király, K., Londe, Z., Németh, K., Fazekas, K., ... Csányi, A. (2013). Probabilistic sequence learning in mild cognitive impairment. Frontiers in Human Neuroscience, 7, 318.
doi: 10.3389/fnhum.2013.00318pmid: 23847493
[69] Niu, H. J., Li, X., Chen, Y. J., Ma, C., Zhang, J. Y., & Zhang, Z. J. (2013). Reduced frontal activation during a working memory task in mild cognitive impairment: A non-invasive near-infrared spectroscopy study. CNS Neuroscience & Therapeutics, 19(2), 125-131.
[70] Okonkwo, O. C., Wadley, V. G., Ball, K., Vance, D. E., & Crowe, M. (2008). Dissociations in visual attention deficits among persons with mild cognitive impairment. Aging, Neuropsychology, and Cognition., 15(4), 492-505.
doi: 10.1080/13825580701844414URL
[71] Perera, T., George, M. S., Grammer, G., Janicak, P. G., Pascual-Leone, A., & Wirecki, T. S. (2016). The clinical TMS society consensus review and treatment recommendations for TMS therapy for major depressive disorder. Brain Stimulation, 9(3), 336-346.
doi: 10.1016/j.brs.2016.03.010URL
[72] Pertl, M. T., Benke, T., Zamarian, L., & Delazer, M. (2015). Decision making and ratio processing in patients with mild cognitive impairment. Journal of Alzheimer's Disease, 48(3), 765-779.
doi: 10.3233/JAD-150291URL
[73] Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303-308.
pmid: 10190820
[74] Rahnev, D., Nee, D. E., Riddle, J., Larson, A. S., & D'Esposito, M. (2016). Causal evidence for frontal cortex organization for perceptual decision making. Proceedings of the National Academy of Sciences of United States of America, 113(21), 6059-6064.
doi: 10.1073/pnas.1522551113URL
[75] Ries, M. L., Schmitz, T. W., Kawahara, T. N., Torgerson, B. M., Trivedi, M. A., & Johnson, S. C. (2006). Task-dependent posterior cingulate activation in mild cognitive impairment. NeuroImage, 29(2), 485-492.
doi: 10.1016/j.neuroimage.2005.07.030URL
[76] Rossi, S., Hallett, M., & Rossini, P. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120(12), 2008-2039.
doi: 10.1016/j.clinph.2009.08.016URL
[77] Seo, E. H., Kim, H., Lee, K. H., & Choo, I. H. (2016). Altered executive function in pre-mild cognitive impairment. Journal of Alzheimer's Disease, 54(3), 933-940
doi: 10.3233/JAD-160052URL
[78] Shaked, D., Katzel, L. I., Seliger, S. L., Gullapalli, R. P., Davatzikos, C., Erus, G., ... Waldstein, S. R. (2018). Dorsolateral prefrontal cortex volume as a mediator between socioeconomic status and executive function. Neuropsychology, 32(8), 985-995.
doi: 10.1037/neu0000484URL
[79] Solé-Padullés, C., Bartrés-Faz, D., Junqué, C., Clemente, I. C., Molinuevo, J. L., Bargalló, N., ... Valls-Solé, J. (2006). Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham-controlled study. Cerebral Cortex, 16(10), 1487-1493.
pmid: 16339086
[80] Strafella, A. P., Paus, T., Barrett, J., & Dagher, A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. NeuroImage, 13(6), 1008-1008.
doi: 10.1016/S1053-8119(01)92344-4URL
[81] Sun, T. T., Xie, T., Wang, J., Zhang, L., Tian, Y. H., Wang, K., ... Wang, H. L. (2020). Decision-making under ambiguity or risk in individuals with Alzheimer's disease and mild cognitive impairment. Frontiers in Psychiatry, 11, 218.
doi: 10.3389/fpsyt.2020.00218URL
[82] Supasitthumrong, T., Tunvirachaisakul, C., Aniwattanapong, D., Tangwongchai, S., Chuchuen, P., Tawankanjanachot, I., ... Maes, M. (2019). Peripheral blood biomarkers coupled with the Apolipoprotein E4 genotype are strongly associated with semantic and episodic memory impairments in elderly subjects with amnestic mild cognitive impairment and Alzheimer's disease. Journal of Alzheimer's Disease, 71(3), 797-811.
doi: 10.3233/JAD-190114pmid: 31424390
[83] Taylor, J. L., Hambro, B. C., Strossman, N. D., Bhatt, P., Hernandez, B., Ashford, J. W., ... McNerney, M. W. (2019). The effects of repetitive transcranial magnetic stimulation in older adults with mild cognitive impairment: A protocol for a randomized, controlled three-arm trial. BMC Neurology, 19(1), 326.
doi: 10.1186/s12883-019-1552-7pmid: 31842821
[84] Themistocleous, C., Eckerström, M., & Kokkinakis, D. (2020). Voice quality and speech fluency distinguish individuals with mild cognitive impairment from healthy controls. PloS One, 15(7), e0236009.
doi: 10.1371/journal.pone.0236009URL
[85] Thomasson, J., Canini, F., Poly-Thomasson, B., Trousselard, M., Granon, S., & Chauveau., F. (2017). Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity. European Neuropsychopharmacology, 27(12), 1308-1318.
doi: 10.1016/j.euroneuro.2017.08.431URL
[86] Tian, Y. L., Yang, C. J., Cui, Y. X., Su, F., Wang, Y. J., Wang, Y. Z., ... Zhang, C. (2018). An excitatory neural assembly encodes short-term memory in the prefrontal cortex. Cell Reports, 22(7), 1734-1744.
doi: 10.1016/j.celrep.2018.01.050URL
[87] Turriziani, P., Smirni, D., Zappala, G., Mangano, G. R., Oliveri, M., & Cipolotti, L. (2012). Enhancing memory performance with rTMS in healthy subjects and individuals with mild cognitive impairment: The role of the right dorsolateral prefrontal cortex. Frontiers in Human Neuroscience, 6, 62.
doi: 10.3389/fnhum.2012.00062pmid: 22514525
[88] Vanderhasselt, M. A., de Raedt, R., & Baeken, C. (2009). Dorsolateral prefrontal cortex and stroop performance: Tackling the lateralization. Psychonomic Bulletin & Review, 16(3), 609-612
doi: 10.3758/PBR.16.3.609URL
[89] van Eijndhoven, P. F. P., Bartholomeus, J., Möbius, M., de Bruijn, A., Ferrari, G. R. A., Mulders, P., Tendolkar, I. (2020). A randomized controlled trial of a standard 4-week protocol of repetitive transcranial magnetic stimulation in severe treatment resistant depression. Journal of Affective Disorders, 274, 444-449.
doi: S0165-0327(20)30235-4pmid: 32663974
[90] Venneri, A., Mitolo, M., Beltrachini, L., Varma, S., Della Pietà, C., Jahn-Carta, C., ... de Marco, M. (2019). Beyond episodic memory: Semantic processing as independent predictor of hippocampal/perirhinal volume in aging and mild cognitive impairment due to Alzheimer's disease. Neuropsychology, 33(4), 523-533.
doi: 10.1037/neu0000534URL
[91] Weiner, M. W., Petersen, R. C., Aisen, P. S., Rafii, M., Shaw, L., Morris, J., ... Jagust, W. (2016). Alzheimer’s disease neuroimaging initiative 3 (ADNI3) protocol. Retrieved May 24, 2016, from http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/clinical/ADNI3_Protocol .
[92] Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971-980.
pmid: 16767087
[93] Wirebring, L. W., Wiklund-Hörnqvist, C., Eriksson, J., Andersson, M., Jonsson, B., & Nyberg, L. (2015). Lesser neural pattern similarity across repeated tests is associated with better long-term memory retention. Journal of Neuroscience, 35(26), 9595-9602.
doi: 10.1523/JNEUROSCI.3550-14.2015pmid: 26134642
[94] Wu, Q. F., Chan, J. S. Y., & Yan, J. H. (2016). Mild cognitive impairment affects motor control and skill learning. Reviews in the Neurosciences, 27(2), 197-217.
doi: 10.1515/revneuro-2015-0020URL
[95] Yang, L. L., Zhao, D., Kong, L. L., Sun, Y. Q., Wang, Z. Y., Gao, Y. Y., ... Wang, Y. M. (2019). High-frequency repetitive transcranial magnetic stimulation (rTMS) improves neurocognitive function in bipolar disorder. Journal of Affective Disorders, 246, 851-856.
doi: 10.1016/j.jad.2018.12.102URL
[96] Zhao, J. W., Li, Z. G., Cong, Y. N., Zhang, J. B., ... Shan, P. (2017). Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer's disease patients. Oncotarget, 8(20), 33864-33871.
doi: 10.18632/oncotarget.v8i20URL
[97] Zhu, X. L., Liu, S. H., Liao, W. H., Kong, L. G., Jiang, C. H., & Yuan, F. L. (2018). Executive function deficit in betel-quid-dependent chewers: Mediating role of prefrontal cortical thickness. Journal of Psychopharmacology, 32(12), 1362-1368.
doi: 10.1177/0269881118806299URL




[1]樊东琼;李锐;雷旭;喻婧. 阿尔兹海默症及轻度认知障碍静息态大尺度脑网络功能连接的改变[J]. 心理科学进展, 2016, 24(2): 217-227.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5620
相关话题/神经 流程 文献 比例 指标