删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

大脑电刺激在听觉语言加工研究中的应用

本站小编 Free考研考试/2022-01-01

马敏璇, 李文婕, 秦梦玲, 韦耀鸿, 谭倩宝, 沈路, 陈骐, 韩彪()
华南师范大学心理学院; 教育部脑认知与教育科学重点实验室(华南师范大学); 华南师范大学心理应用研究中心; 华南师范大学广东省心理健康与认知科学重点实验室, 广州 510631
收稿日期:2020-09-18出版日期:2021-10-15发布日期:2021-08-23


基金资助:国家自然科学基金青年基金项目(32000741);广东省自然科学基金面上项目(2021A1515011100);广东省区域联合基金青年基金项目(2020A1515110223);广东省普通高校青年创新人才项目(2020KQNCX020);广州市基础研究计划基础与应用基础研究项目(202102020761);国家自然科学基金青年基金项目(32000785);广东省自然科学基金面上项目(2021A1515011185);广州市基础研究计划基础与应用基础研究项目(202102020274)

Application of electrical brain stimulation in the auditory language processing

MA Minxuan, LI Wenjie, QIN Mengling, WEI Yaohong, TAN Qianbao, SHEN Lu, CHEN Qi, HAN Biao()
School of Psychology, South China Normal University; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; Center for Studies of Psychological Application, South China Normal University; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
Received:2020-09-18Online:2021-10-15Published:2021-08-23







摘要/Abstract


摘要: 大脑电刺激是历史悠久但近年来才广泛应用在人类被试上的实验技术。通过对颅内刺激位点进行电刺激, 并分析引发的暂时性行为功能变化和记录位点的电位活动, 大脑电刺激技术可以揭示认知加工过程中脑区内的功能作用与脑区间的有效连接。通过对听觉语言加工过程相关的丘脑、听觉皮层、高级语言皮层进行电刺激, 现有研究发现了各个脑区的不同功能特点以及不同脑区间的信息传递机制, 为进一步探索听觉语言加工的神经机制提供了新的视角。



图1听觉语言加工过程示意图。 听觉语言信息从丘脑传到听觉皮层, 再由听觉皮层依次传导到颞叶、额叶语言区, 同时额叶语言区将信息反馈到颞叶语言区。 图片修改于:OpenStax, CC BY 4.0; Cancer Research UK, CC BY-SA via Wikimedia Commons.
图1听觉语言加工过程示意图。 听觉语言信息从丘脑传到听觉皮层, 再由听觉皮层依次传导到颞叶、额叶语言区, 同时额叶语言区将信息反馈到颞叶语言区。 图片修改于:OpenStax, CC BY 4.0; Cancer Research UK, CC BY-SA via Wikimedia Commons.



图2CCEP示意图。当刺激某一区域的电极位点(红色位点)之后, 可以在有联系的位点(绿色位点)记录到诱发电位。 注:虚线为颅内立体定向电极。图片修改于: CNX OpenStax, CC BY 4.0, via Wikimedia Commons.
图2CCEP示意图。当刺激某一区域的电极位点(红色位点)之后, 可以在有联系的位点(绿色位点)记录到诱发电位。 注:虚线为颅内立体定向电极。图片修改于: CNX OpenStax, CC BY 4.0, via Wikimedia Commons.


表1大脑电刺激在听觉语言加工中的应用研究(脑区连接部分)
研究 N 年龄mean (min~max) 刺激位点 记录位点 频率
(Hz)
电流强度
(mA)
时长(ms) 主要结论
Rosenberg et al. (2009) 7 34
(16~47)
PuM, 皮层广泛位置 皮层广泛位置, PuM 0.2 3 1 丘脑内侧枕与皮层有广泛联系
Atencio et al. (2014) 5 成年 MGB PAC 2 (20~35.6) ×10-6 0.2 用低强度电流刺激猫丘脑可以激活听觉皮层
Howard et al. (2000) 18 / HG PLST 1/2 1~4 0.2 HG与PLST之间存在单向投射
Brugge et al. (2003) 7 38
(19~46)
HG, PLST HG, PLST 1/0.5 1~4 0.2 HG与PLST之间存在双向投射
Matsumoto et al. (2004) 8 24.9
(13~42)
颞叶, 额叶, 面部运动区 颞叶, 额叶, 顶叶, 中央沟 1 12 0.3 Perisylvian内的双向连接
Entz et al. (2014) 25 31.6
(15~60)
颞叶, 额叶 颞叶, 额叶 0.5/1 10 0.2 颞叶、额叶等语言网络之间的双向投射
Kanno et al. (2018) 27 /
(13~43)
额叶 颞顶区 1 10 / 个体的额叶和颞顶叶在半球之间的连接比较
Nakae et al. (2020) 14 45.9
(21~79)
IFG, 外侧颞-枕区 IFG, 外侧颞-枕区 1 15 0.3 左IFG各部分分别与颞叶呈梯度性连接

表1大脑电刺激在听觉语言加工中的应用研究(脑区连接部分)
研究 N 年龄mean (min~max) 刺激位点 记录位点 频率
(Hz)
电流强度
(mA)
时长(ms) 主要结论
Rosenberg et al. (2009) 7 34
(16~47)
PuM, 皮层广泛位置 皮层广泛位置, PuM 0.2 3 1 丘脑内侧枕与皮层有广泛联系
Atencio et al. (2014) 5 成年 MGB PAC 2 (20~35.6) ×10-6 0.2 用低强度电流刺激猫丘脑可以激活听觉皮层
Howard et al. (2000) 18 / HG PLST 1/2 1~4 0.2 HG与PLST之间存在单向投射
Brugge et al. (2003) 7 38
(19~46)
HG, PLST HG, PLST 1/0.5 1~4 0.2 HG与PLST之间存在双向投射
Matsumoto et al. (2004) 8 24.9
(13~42)
颞叶, 额叶, 面部运动区 颞叶, 额叶, 顶叶, 中央沟 1 12 0.3 Perisylvian内的双向连接
Entz et al. (2014) 25 31.6
(15~60)
颞叶, 额叶 颞叶, 额叶 0.5/1 10 0.2 颞叶、额叶等语言网络之间的双向投射
Kanno et al. (2018) 27 /
(13~43)
额叶 颞顶区 1 10 / 个体的额叶和颞顶叶在半球之间的连接比较
Nakae et al. (2020) 14 45.9
(21~79)
IFG, 外侧颞-枕区 IFG, 外侧颞-枕区 1 15 0.3 左IFG各部分分别与颞叶呈梯度性连接


表2大脑电刺激在听觉语言加工中的应用研究(功能特点方面)
研究 N 年龄mean
(min~max)
刺激位点 记录位点 频率(Hz) 电流强度(mA) 时长(ms) 主要结论
Ma et al. (2009) 11 成年 MGBv/m A1 10 0.0001 0.2 刺激蝙蝠MGB不同部位对A1的影响不同
Zhang et al. (2000) 9 成年 听觉皮层 MGB 5 0.0001 0.2 髭蝠听觉皮层对丘脑神经元的反馈作用
Sinai et al. (2009) 6 35.7(23~58) STG STG 50 10~15 0.3 颞上回中/后部均影响听觉语言知觉和听觉理解
Boatman et al. (1997) 5 32(17~47) 左STG 左STG <15 0.3 左STG辅音和元音知觉是有差异的
Suzuki et al. (2018) 7 22(18~47) PLST PLST 50 0~15 0.4 双侧PLST的功能不同
Matsumoto et al. (2011) 2 31(30~32) STG/STS, pMTG, pITG STG/STS, pMTG, pITG 50 / 0.3 左颞叶前区在听觉语言感知中的作用
Roux et al. (2015) 90 48(18~74) 额叶, 顶叶, 颞叶 额叶, 顶叶, 颞叶 60 4~12 1 左侧颞上回参与单词理解的加工

表2大脑电刺激在听觉语言加工中的应用研究(功能特点方面)
研究 N 年龄mean
(min~max)
刺激位点 记录位点 频率(Hz) 电流强度(mA) 时长(ms) 主要结论
Ma et al. (2009) 11 成年 MGBv/m A1 10 0.0001 0.2 刺激蝙蝠MGB不同部位对A1的影响不同
Zhang et al. (2000) 9 成年 听觉皮层 MGB 5 0.0001 0.2 髭蝠听觉皮层对丘脑神经元的反馈作用
Sinai et al. (2009) 6 35.7(23~58) STG STG 50 10~15 0.3 颞上回中/后部均影响听觉语言知觉和听觉理解
Boatman et al. (1997) 5 32(17~47) 左STG 左STG <15 0.3 左STG辅音和元音知觉是有差异的
Suzuki et al. (2018) 7 22(18~47) PLST PLST 50 0~15 0.4 双侧PLST的功能不同
Matsumoto et al. (2011) 2 31(30~32) STG/STS, pMTG, pITG STG/STS, pMTG, pITG 50 / 0.3 左颞叶前区在听觉语言感知中的作用
Roux et al. (2015) 90 48(18~74) 额叶, 顶叶, 颞叶 额叶, 顶叶, 颞叶 60 4~12 1 左侧颞上回参与单词理解的加工







[1] Alitto, H. J., & Usrey, W. M. (2003). Corticothalamic feedback and sensory processing. Current Opinion in Neurobiology, 13(4), 440-445.
pmid: 12965291
[2] Amunts, K., Lenzen, M., Friederici, A. D., Schleicher, A., Morosan, P., Palomero-Gallagher, N., & Zilles, K. (2010). Broca's region: Novel organizational principles and multiple receptor mapping. Plos Biology, 8(9), e1000489.
doi: 10.1371/journal.pbio.1000489URL
[3] Antunes, F. M., & Malmierca, M. S. (2014). An overview of stimulus-specific adaptation in the auditory thalamus. Brain Topography, 27(4), 480-499.
doi: 10.1007/s10548-013-0342-6pmid: 24343247
[4] Atencio, C. A., Shih, J. Y., Schreiner, C. E., & Cheung, S. W. (2014). Primary auditory cortical responses to electrical stimulation of the thalamus. Journal of Neurophysiology, 111(5), 1077-1087.
doi: 10.1152/jn.00749.2012pmid: 24335216
[5] Bartlett, E. L. (2013). The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. Brain and Language, 126(1), 29-48.
doi: 10.1016/j.bandl.2013.03.003pmid: 23725661
[6] Bignall, K. E. (1969). Bilateral temporofrontal projections in the squirrel monkey: Origin, distribution and pathways. Brain Research, 13(2), 319-327.
pmid: 4977229
[7] Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796.
doi: 10.1093/cercor/bhp055URL
[8] Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512-528.
[9] Boatman, D. (2004). Cortical bases of speech perception: Evidence from functional lesion studies. Cognition, 92(1-2), 47-65.
doi: 10.1016/j.cognition.2003.11.001URL
[10] Boatman, D., Hall, C., Goldstein, M. H., Lesser, R., & Gordon, B. (1997). Neuroperceptual differences in consonant and vowel discrimination: As revealed by direct cortical electrical interference. Cortex, 33(1), 83-98.
pmid: 9088723
[11] Boatman, D., Lesser, R. P., & Gordon, B. (1995). Auditory speech processing in the left temporal lobe: An electrical interference study. Brain and Language, 51(2), 269-290.
pmid: 8564472
[12] Bonilha, L., Hillis, A. E., Hickok, G., den Ouden, D. B., Rorden, C., & Fridriksson, J. (2017). Temporal lobe networks supporting the comprehension of spoken words. Brain, 140(9), 2370-2380.
doi: 10.1093/brain/awx169URL
[13] Borchers, S., Himmelbach, M., Logothetis, N., & Karnath, H. O. (2011). Direct electrical stimulation of human cortex -- The gold standard for mapping brain functions?. Nature Reviews Neuroscience, 13(1), 63-70.
doi: 10.1038/nrn3140pmid: 22127300
[14] Boulogne, S., Andre-Obadia, N., Kimiskidis, V. K., Ryvlin, P., & Rheims, S. (2016). Cortico-cortical and motor evoked potentials to single and paired-pulse stimuli: An exploratory transcranial magnetic and intracranial electric brain stimulation study. Human Brain Mapping, 37(11), 3767-3778.
doi: 10.1002/hbm.v37.11URL
[15] Boulogne, S., Ryvlin, P., & Rheims, S. (2016). Single and paired-pulse electrical stimulation during invasive EEG recordings. Revue Neurologique, 172(3), 174-181.
doi: 10.1016/j.neurol.2016.02.004pmid: 26993563
[16] Brugge, J. F., Volkov, I. O., Garell, P. C., Reale, R. A., & Howard, M. A., 3rd (2003). Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans. Journal of Neurophysiology, 90(6), 3750-3763.
pmid: 12968011
[17] Catani, M., & Mesulam, M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex, 44(8), 953-961.
doi: 10.1016/j.cortex.2008.04.002pmid: 18614162
[18] Chang, E. F., Kurteff, G., & Wilson, S. M. (2018). Selective interference with syntactic encoding during sentence production by direct electrocortical stimulation of the inferior frontal gyrus. Journal of Cognitive Neuroscience, 30(3), 411-420.
doi: 10.1162/jocn_a_01215URL
[19] Cocquyt, E. -M., Lanckmans, E., van Mierlo, P., Duyck, W., Szmalec, A., Santens, P., & de Letter, M. (2020). The white matter architecture underlying semantic processing: A systematic review. Neuropsychologia, 136, 107182.
doi: S0028-3932(19)30228-3pmid: 31568774
[20] Conner, C. R., Ellmore, T. M., DiSano, M. A., Pieters, T. A., Potter, A. W., & Tandon, N. (2011). Anatomic and electro-physiologic connectivity of the language system: A combined DTI-CCEP study. Computers in Biology and Medicine, 41(12), 1100-1109.
doi: 10.1016/j.compbiomed.2011.07.008URL
[21] Cushing, H. (1909). A note upon the faradic stimulation of the postcentral gyrus in conscious patients. Brain, 32(1), 44-53.
doi: 10.1093/brain/32.1.44URL
[22] David, O., Bastin, J., Chabardès, S., Minotti, L., & Kahane, P. (2010). Studying network mechanisms using intracranial stimulation in epileptic patients. Frontiers in Systems Neuroscience, 4, 148.
[23] David, O., Job, A. S., de Palma, L., Hoffmann, D., Minotti, L., & Kahane, P. (2013). Probabilistic functional tractography of the human cortex. NeuroImage, 80, 307-317.
doi: 10.1016/j.neuroimage.2013.05.075URL
[24] de la Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2012). Thalamic connections of auditory cortex in marmoset monkeys: Lateral belt and parabelt regions. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(5), 822-836.
doi: 10.1002/ar.v295.5URL
[25] den Ouden, D. B., Saur, D., Mader, W., Schelter, B., Lukic, S., Wali, E., … Thompson, C. K. (2012). Network modulation during complex syntactic processing. NeuroImage, 59(1), 815-823.
doi: 10.1016/j.neuroimage.2011.07.057URL
[26] DeWitt, I., & Rauschecker, J. P. (2012). Phoneme and word recognition in the auditory ventral stream. Proceedings of the National Academy of Sciences, 109(8), E505-E514.
[27] Duffau, H. (2015). Stimulation mapping of white matter tracts to study brain functional connectivity. Nature Reviews Neurology, 11(5), 255-265.
doi: 10.1038/nrneurol.2015.51URL
[28] Duffau, H., Leroy, M., & Gatignol, P. (2008). Cortico-subcortical organization of language networks in the right hemisphere: An electrostimulation study in left-handers. Neuropsychologia, 46(14), 3197-3209.
doi: 10.1016/j.neuropsychologia.2008.07.017URL
[29] Enatsu, R., Kubota, Y., Kakisaka, Y., Bulacio, J., Piao, Z., O'Connor, T., … Nair, D. R. (2013). Reorganization of posterior language area in temporal lobe epilepsy: A cortico-cortical evoked potential study. Epilepsy Research, 103(1), 73-82.
doi: 10.1016/j.eplepsyres.2012.07.008pmid: 22819071
[30] Entz, L., Tóth, E., Keller, C. J., Bickel, S., Groppe, D. M., Fabó, D., … Mehta, A. D. (2014). Evoked effective connectivity of the human neocortex. Human Brain Mapping, 35(12), 5736-5753.
doi: 10.1002/hbm.v35.12URL
[31] Europa, E., Gitelman, D. R., Kiran, S., & Thompson, C. K. (2019). Neural connectivity in syntactic movement processing. Frontiers in Human Neuroscience, 13, 27.
doi: 10.3389/fnhum.2019.00027URL
[32] Ezure, K., & Oshima, T. (1985). Lateral spread of neuronal activity within the motor cortex investigated with intracellular responses to distant epicortical stimulation. The Japanese Journal of Physiology, 35(2), 223-249.
doi: 10.2170/jjphysiol.35.223URL
[33] Fernández, L., Velásquez, C., García Porrero, J. A., de Lucas, E. M., Martino, J. (2020). Heschl's gyrus fiber intersection area: A new insight on the connectivity of the auditory-language hub. Neurosurgical Focus, 48(2), E7.
[34] Foerster, O., & Altenburger, H. (1935) Elektrobiologische vorgange an der menschlichen hirnrinde. Dtsch. Z. Nervenheilk, 135, 277-286.
doi: 10.1007/BF01732786URL
[35] Friederici, A. D. (2012). The cortical language circuit: From auditory perception to sentence comprehension. Trends in Cognitive Sciences, 16(5), 262-268.
doi: 10.1016/j.tics.2012.04.001pmid: 22516238
[36] Friederici, A. D., Chomsky, N., Berwick, R. C., Moro, A., & Bolhuis, J. J. (2017). Language, mind and brain. Nature Human Behaviour, 1(10), 713-722.
doi: 10.1038/s41562-017-0184-4pmid: 31024099
[37] Fritsch, G., & Hitzig, E. (1870) Uber die elektrische erregbarkeit des Grosshirns. Arch Anat Physiol Wissen, 37, 300-332. Reprinted in 2009: Electric excitability of the cerebrum. Epilepsy & Behavior, 15(2), 123-130.
[38] Garell, P. C., Bakken, H., Greenlee, J. D. W., Volkov, I., Reale, R. A., Oya, H., … Brugge, J. F. (2013). Functional connection between posterior superior temporal gyrus and ventrolateral prefrontal cortex in human. Cerebral Cortex, 23(10), 2309-2321.
doi: 10.1093/cercor/bhs220URL
[39] George, D. D., Ojemann, S. G., Drees, C., & Thompson, J. A. (2020). Stimulation mapping using stereoelectroencephalography: Current and future directions. Frontiers in Neurology, 11, 320.
doi: 10.3389/fneur.2020.00320pmid: 32477236
[40] Gierhan, S. M. E. (2013). Connections for auditory language in the human brain. Brain and Language, 127(2), 205-221.
doi: 10.1016/j.bandl.2012.11.002pmid: 23290461
[41] Hackett, T. A. (2011). Information flow in the auditory cortical network. Hearing Research, 271(1-2), 133-146.
doi: 10.1016/j.heares.2010.10.016URL
[42] Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews. Neuroscience, 8(5), 393-402.
doi: 10.1038/nrn2113URL
[43] Howard, M. A., Volkov, I. O., Mirsky, R., Garell, P. C., Noh, M. D., Granner, M., … Brugge, J. F. (2000). Auditory cortex on the human posterior superior temporal gyrus. The Journal of Comparative Neurology, 416(1), 79-92.
doi: 10.1002/(ISSN)1096-9861URL
[44] Humphries, C., Liebenthal, E., & Binder, J. R. (2010). Tonotopic organization of human auditory cortex. NeuroImage, 50(3), 1202-1211.
doi: 10.1016/j.neuroimage.2010.01.046pmid: 20096790
[45] Ivanova, M. V., Isaev, D. Y., Dragoy, O. V., Akinina, Y. S., Petrushevskiy, A. G., Fedina, O. N., … Dronkers, N. F. (2016). Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex, 85, 165-181.
doi: S0010-9452(16)30098-3pmid: 27289586
[46] Jankowska, E., Padel, Y., & Tanaka, R. (1975). The mode of activation of pyramidal tract cells by intracortical stimuli. The Journal of Physiology, 249(3), 617-636.
doi: 10.1113/jphysiol.1975.sp011034URL
[47] Kanno, A., Enatsu, R., Ookawa, S., Noshiro, S., Ohtaki, S., Suzuki, K., … Mikuni, N. (2018). Interhemispheric asymmetry of network connecting between frontal and temporoparietal cortices: A corticocortical-evoked potential study. World Neurosurgery, 120, e628-e636.
[48] Keller, C. J., Bickel, S., Entz, L., Ulbert, I., Milham, M. P., Kelly, C., & Mehta, A. D. (2011). Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proceedings of the National Academy of Sciences, 108(25), 10308-10313.
doi: 10.1073/pnas.1019750108URL
[49] Keller, C. J., Honey, C. J., Mégevand, P., Entz, L., Ulbert, I., & Mehta, A. D. (2014). Mapping human brain networks with cortico-cortical evoked potentials. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1653), 20130528.
[50] Koubeissi, M. Z., Fernandez-Baca Vaca, G., Maciunas, R., & Stephani, C. (2016). A white matter tract mediating awareness of speech. Neurology, 86(2), 177-179.
doi: 10.1212/WNL.0000000000002246pmid: 26643545
[51] Kovac, S., Kahane, P., & Diehl, B. (2016). Seizures induced by direct electrical cortical stimulation-mechanisms and clinical considerations. Clinical Neurophysiology, 127(1), 31-39.
doi: 10.1016/j.clinph.2014.12.009URL
[52] Kuhnke, P., Meyer, L., Friederici, A. D., & Hartwigsen, G. (2017). Left posterior inferior frontal gyrus is causally involved in reordering during sentence processing. NeuroImage, 148, 254-263.
doi: 10.1016/j.neuroimage.2017.01.013URL
[53] Kunieda, T., Yamao, Y., Kikuchi, T., & Matsumoto, R. (2015). New approach for exploring cerebral functional connectivity: Review of cortico-cortical evoked potential. Neurologia Medico-Chirurgica, 55(5), 374-382.
doi: 10.2176/nmc.ra.2014-0388URL
[54] Lachaux, JP., Rudrauf, D., Kahane, P. (2003). Intracranial EEG and human Brain Mapping. Journal of Physiology-Paris, 97(4-6), 613-628.
[55] Lee, C. C., & Winer, J. A. (2011). Convergence of thalamic and cortical pathways in cat auditory cortex. Hearing Research, 274(1-2), 85-94.
doi: 10.1016/j.heares.2010.12.020URL
[56] Leonard, M. K., Cai, R., Babiak, M. C., Ren, A., & Chang, E. F. (2019). The peri-Sylvian cortical network underlying single word repetition revealed by electrocortical stimulation and direct neural recordings. Brain and Language, 193, 58-72.
doi: 10.1016/j.bandl.2016.06.001URL
[57] Lesser, R. P., Lüders, H., Klem, G., Dinner, D. S., Morris, H. H., Hahn, J. F., & Wyllie, E. (1987). Extraoperative cortical functional localization in patients with epilepsy. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 4(1), 27-53.
[58] Liegeois-Chauvel, C., Musolino, A., & Chauvel, P. (1991). Localization of the primary auditory area in man. Brain, 114(1), 139-153.
[59] Liu, Z., Shu, S., Lu, L., Ge, J., & Gao, J. H. (2020). Spatiotemporal dynamics of predictive brain mechanisms during speech processing: An MEG study. Brain and Language, 203, 104755.
doi: 10.1016/j.bandl.2020.104755URL
[60] Lyu, B., Ge, J., Niu, Z., Tan, L. H., & Gao, J. H. (2016). Predictive brain mechanisms in sound-to-meaning mapping during speech processing. Journal of Neuroscience, 36(42), 10813-10822.
doi: 10.1523/JNEUROSCI.0583-16.2016URL
[61] Mandonnet, E., Winkler, P. A., & Duffau, H. (2010). Direct electrical stimulation as an input gate into brain functional networks: Principles, advantages and limitations. Acta Neurochirurgica. 152(2), 185-193.
doi: 10.1007/s00701-009-0469-0URL
[62] Mars, R. B., Foxley, S., Verhagen, L., Jbabdi, S., Sallet, J., Noonan, M. P., … Rushworth, M. F. S. (2016). The extreme capsule fiber complex in humans and macaque monkeys: A comparative diffusion MRI tractography study. Brain Structure and Function, 221(8), 4059-4071.
doi: 10.1007/s00429-015-1146-0URL
[63] Matsumoto, R., Nair, D. R., LaPresto, E., Najm, I., Bingaman, W., Shibasaki, H., & Luders, H. O. (2004). Functional connectivity in the human language system: A cortico-cortical evoked potential study. Brain, 127(10), 2316-2330.
doi: 10.1093/brain/awh246URL
[64] Matsumoto, R., Imamura, H., Inouchi, M., Nakagawa, T., Yokoyama, Y., Matsuhashi, M., … Ikeda, A. (2011). Left anterior temporal cortex actively engages in speech perception: A direct cortical stimulation study. Neuropsychologia, 49(5), 1350-1354.
doi: S0028-3932(11)00028-5pmid: 21251921
[65] Matsumoto, R., Kunieda, T., & Nair, D. (2017). Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure, 44, 27-36.
doi: S1059-1311(16)30206-0pmid: 27939100
[66] Ma, X., & Suga, N. (2009). Specific and nonspecific plasticity of the primary auditory cortex elicited by thalamic auditory neurons. Journal of Neuroscience, 29(15), 4888- 4896.
doi: 10.1523/JNEUROSCI.0167-09.2009URL
[67] Moore, B. C. J., Tyler, L. K., & Marslen-Wilson, W. (2008). Introduction. The perception of speech: From sound to meaning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1493), 917-921.
[68] Muh, C. R., Chou, N. D., Rahimpour, S., Komisarow, J. M., Spears, T. G., Fuchs, H. E., … Grant, G. A. (2020). Cortical stimulation mapping for localization of visual and auditory language in pediatric epilepsy patients. Journal of Neurosurgery: Pediatrics, 25(2), 168-177.
doi: 10.3171/2019.8.PEDS1922URL
[69] Nakai, Y., Jeong, J. -W., Brown, E. C., Rothermel, R., Kojima, K., Kambara, T., … Asano, E. (2017). Three- and four-dimensional mapping of speech and language in patients with epilepsy. Brain, 140(5), 1351-1370.
doi: 10.1093/brain/awx051URL
[70] Nakae, T., Matsumoto, R., Kunieda, T., Arakawa, Y., Kobayashi, K., Shimotake, A., … Miyamoto, S. (2020). Connectivity gradient in the human left inferior frontal gyrus: Intraoperative cortico-cortical evoked potential study. Cerebral Cortex, 30(8), 4633-4650.
doi: 10.1093/cercor/bhaa065URL
[71] Nishida, M., Korzeniewska, A., Crone, N. E., Toyoda, G., Nakai, Y., Ofen, N., … Asano, E. (2017). Brain network dynamics in the human articulatory loop. Clinical Neurophysiology, 128(8), 1473-1487.
doi: 10.1016/j.clinph.2017.05.002URL
[72] Oestreich, L. K. L., Whitford, T. J., & Garrido, M. I. (2018). Prediction of speech sounds is facilitated by a functional fronto-temporal network. Frontiers in Neural Circuits, 12, 43.
doi: 10.3389/fncir.2018.00043pmid: 29875638
[73] Orena, E. F., Caldiroli, D., Acerbi, F., Barazzetta, I., & Papagno, C. (2019). Investigating the functional neuroanatomy of concrete and abstract word processing through direct electric stimulation (DES) during awake surgery. Cognitive Neuropsychology, 36(3-4), 167-177.
[74] Pandya, D. N., Hallett, M., & Kmukherjee, S. K. (1969). Intra- and interhemispheric connections of the neocortical auditory system in the rhesus monkey. Brain Research, 14(1), 49-65.
pmid: 4977327
[75] Pandya, D. N., & Sanides, F. (1973). Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Zeitschrift Fur Anatomie und Entwicklungsgeschichte, 139(2), 127-161.
doi: 10.1007/BF00523634URL
[76] Perrone-Bertolotti, M., Alexandre, S., Jobb, A. S., de Palma, L., Baciu, M., Mairesse, M. P., … David, O. (2020). Probabilistic mapping of language networks from high frequency activity induced by direct electrical stimulation. Human Brain Mapping, 41(14), 4113-4126.
doi: 10.1002/hbm.v41.14URL
[77] Pfurtscheller, G., & Cooper, R. (1975). Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalography and Clinical Neurophysiology, 38(1), 93-96.
pmid: 45909
[78] Prime, D., Rowlands, D., O'Keefe, S., & Dionisio, S. (2018). Considerations in performing and analyzing the responses of cortico-cortical evoked potentials in stereo-EEG. Epilepsia, 59(1), 16-26.
doi: 10.1111/epi.13939URL
[79] Rattay, F. (1999). The basic mechanism for the electrical stimulation of the nervous system. Neuroscience, 89(2), 335-346.
pmid: 10077317
[80] Rauschecker, J. P. (2011). An expanded role for the dorsal auditory pathway in sensorimotor control and integration. Hearing Research, 271(1-2), 16-25.
doi: 10.1016/j.heares.2010.10.016URL
[81] Rauschecker, J. P. (2018). Where did language come from? Precursor mechanisms in nonhuman primates. Current Opinion in Behavioral Sciences, 21, 195-204.
doi: 10.1016/j.cobeha.2018.06.003pmid: 30778394
[82] Rauschecker, J. P., Tian, B., & Hauser, M. (1995). Processing of complex sounds in the macaque nonprimary auditory cortex. Science, 268(5207), 111-114.
pmid: 7701330
[83] Ripollés, P., Biel, D., Peñaloza, C., Kaufmann, J., Marco- Pallarés, J., Noesselt, T., & Rodríguez-Fornells, A. (2017). Strength of temporal white matter pathways predicts semantic learning. Journal of Neuroscience, 37(46), 11101-11113.
doi: 10.1523/JNEUROSCI.1720-17.2017pmid: 29025925
[84] Rofes, A., Mandonnet, E., de Aguiar, V., Rapp, B., Tsapkini, K., & Miceli, G. (2019). Language processing from the perspective of electrical stimulation mapping. Cognitive Neuropsychology, 36(3-4), 117-139.
[85] Rosenberg, D. S., Mauguiere, F., Catenoix, H., Faillenot, I., & Magnin, M. (2009). Reciprocal thalamocortical connectivity of the medial pulvinar: A depth stimulation and evoked potential study in human brain. Cerebral Cortex, 19(6), 1462-1473.
doi: 10.1093/cercor/bhn185URL
[86] Roux, F. E., Miskin, K., Durand, J. B., Sacko, O., Réhault, E., Tanova, R., & Démonet, J. F. (2015). Electrostimulation mapping of comprehension of auditory and visual words. Cortex, 71, 398-408.
doi: 10.1016/j.cortex.2015.07.001URL
[87] Sarubbo, S., de Benedictis, A., Merler, S., Mandonnet, E., Barbareschi, M., Dallabona, M., Duffau, H. (2016). Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation. Human Brain Mapping, 37(11), 3858-3872.
doi: 10.1002/hbm.23281pmid: 27258125
[88] Schneider, L., Spierer, L., Maeder, P., Buttet Sovilla, J., & Clarke, S. (2016). Auditory-verbal analysis in aphasia. Aphasiology, 30(12), 1483-1511.
doi: 10.1080/02687038.2016.1140119URL
[89] Serafini, S., Clyde, M., Tolson, M., Haglund, M. M. (2013). Multimodality word-finding distinctions in cortical stimulation mapping. Neurosurgery, 73(1), 36-47.
doi: 10.1227/01.neu.0000429861.42394.d8pmid: 23615091
[90] Shimotake, A., Matsumoto, R., Ueno, T., Kunieda, T., Saito, S., Hoffman, P., … Ikeda, A. (2015). Direct exploration of the role of the ventral anterior temporal lobe in semantic memory: Cortical stimulation and local field potential evidence from subdural grid electrodes. Cerebral Cortex, 25(10), 3802-3817.
doi: 10.1093/cercor/bhu262URL
[91] Sierpowska, J., Gabarrós, A., Fernández-Coello, A., Camins, À., Castañer, S., Juncadella, M., … Rodríguez-Fornells, A. (2019). White-matter pathways and semantic processing: Intrasurgical and lesion-symptom mapping evidence. NeuroImage: Clinical, 22, 101704.
doi: 10.1016/j.nicl.2019.101704URL
[92] Sinai, A., Crone, N. E., Wied, H. M., Franaszczuk, P. J., Miglioretti, D., & Boatman-Reich, D. (2009). Intracranial mapping of auditory perception: Event-related responses and electrocortical stimulation. Clinical Neurophysiology, 120(1), 140-149.
doi: 10.1016/j.clinph.2008.10.152pmid: 19070540
[93] Skeide, M. A., & Friederici, A. D. (2016). The ontogeny of the cortical language network. Nature Reviews Neuroscience, 17(5), 323-332.
doi: 10.1038/nrn.2016.23URL
[94] Suzuki, Y., Enatsu, R., Kanno, A., Ochi, S., & Mikuni, N. (2018). The auditory cortex network in the posterior superior temporal area. Clinical Neurophysiology, 129(10), 2132-2136.
doi: S1388-2457(18)31175-1pmid: 30110660
[95] Talairach, J., & Bancaud, J. (1966). Lesion, "irritative" zone and epileptogenic focus. Stereotactic and Functional Neurosurgery, 27(1-3), 91-94.
doi: 10.1159/000103925URL
[96] Tang, J., Yang, W., & Suga, N. (2012). Modulation of thalamic auditory neurons by the primary auditory cortex. Journal of Neurophysiology, 108(3), 935-942.
doi: 10.1152/jn.00251.2012pmid: 22552191
[97] Tremblay, P., & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language, 162, 60-71.
doi: S0093-934X(16)30047-5pmid: 27584714
[98] Wessinger, C. M., VanMeter, J., Tian, B., van Lare, J., Pekar, J., & Rauschecker, J. P. (2001). Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 13(1), 1-7.
pmid: 11224904
[99] Woods, D. L., Herron, T. L., Kang, X., Cate, A. D., & Yund, E. W. (2011). Phonological processing in human auditory cortical fields. Frontiers in Human Neuroscience, 5(42), 1-15.
[100] Yi, H. G., Leonard, M. K., & Chang, E. F. (2019). The encoding of speech sounds in the superior temporal gyrus. Neuron, 102(6), 1096-1110.
doi: 10.1016/j.neuron.2019.04.023URL
[101] Young, J. J., Coulehan, K., Fields, M. C., Yoo, J. Y., Marcuse, L. V., Jette, N., … Bender, H. A. (2018). Language mapping using electrocorticography versus stereoelectroencephalography: A case series. Epilepsy & Behavior, 84, 148-151.
[102] Zhang, G., Si, Y., & Dang, J. (2019). Revealing the dynamic brain connectivity from perception of speech sound to semantic processing by EEG. Neuroscience, 415, 70-76.
doi: 10.1016/j.neuroscience.2019.07.023URL
[103] Zhang, Y., & Suga, N. (2000). Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats. Journal of Neurophysiology, 84(1), 325-333.
pmid: 10899207




[1]赵科, 顾晶金, 黄冠华, 郑爽, 傅小兰. 主动控制感在大脑表征中的时空标记[J]. 心理科学进展, 2021, 29(11): 1901-1910.
[2]白亚停, 何文广. 二语具身认知:自动激活还是母语中介?[J]. 心理科学进展, 2021, 29(11): 1970-1978.
[3]谢莹, 刘昱彤, 陈明亮, 梁安迪. 品牌消费旅程中消费者的认知心理过程——神经营销学视角[J]. 心理科学进展, 2021, 29(11): 2024-2042.
[4]那宇亭, 赵宇雯, 关丽丽. 自我面孔识别的神经机制:基于fMRI研究的ALE元分析[J]. 心理科学进展, 2021, 29(10): 1783-1795.
[5]张璇, 周晓林. 神经美学视角的审美愉悦加工机制[J]. 心理科学进展, 2021, 29(10): 1847-1854.
[6]齐星亮, 蔡厚德. 镜像等效或守恒及其打破:从行为到认知神经机制的研究证据[J]. 心理科学进展, 2021, 29(10): 1855-1865.
[7]朱麟 刘瑾茹 李静 刘聪慧. 道德外语效应及其调节变量:来自元分析的证据[J]. 心理科学进展, 0, (): 0-0.
[8]曲佳晨 贡喆. 信任水平存在性别差异吗?[J]. 心理科学进展, 0, (): 0-0.
[9]吴梦慧 谢久书 邓铸. 视觉观点采择中自我中心性偏差的抑制和归因之争[J]. 心理科学进展, 0, (): 0-0.
[10]王春地, 王大辉. 振动触觉频率信息的工作记忆容量及存储机制[J]. 心理科学进展, 2021, 29(7): 1141-1148.
[11]曾宪卿, 许冰, 孙博, 叶健彤, 傅世敏. EMMN受偏差-标准刺激对类型和情绪类型影响: 来自元分析的证据[J]. 心理科学进展, 2021, 29(7): 1163-1178.
[12]侯文霞, 田欣然, 刘立志, 易冰, 欧玉晓, 陈文锋, 尚俊辰. 面孔吸引力同化的连续性效应[J]. 心理科学进展, 2021, 29(7): 1210-1215.
[13]荆伟, 张婕, 付锦霞, 田琳, 赵微. 婴幼儿面孔注意偏向:先天倾向与发展轨迹——来自正常和孤独症婴幼儿的证据[J]. 心理科学进展, 2021, 29(7): 1216-1230.
[14]王润洲, 毕鸿燕. 发展性阅读障碍的听觉时间加工缺陷[J]. 心理科学进展, 2021, 29(7): 1231-1238.
[15]王正雨, 胡金生. 睡眠对创造性问题解决的影响: 基于记忆重组的解释[J]. 心理科学进展, 2021, 29(7): 1251-1263.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5595
相关话题/语言 心理 科学 基础 过程

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 时间与金钱概念对消费者购买决策的不同影响及其心理机制
    贺汝婉1,李斌1,2(),张淑颖1,崔馨月1,雷励11暨南大学管理学院,广州5106322暨南大学企业发展研究所,广州510632收稿日期:2020-11-02发布日期:2021-07-22通讯作者:李斌E-mail:bingoli@jnu.edu.cn基金资助:国家自然科学基金项目(7160108 ...
    本站小编 Free考研考试 2022-01-01
  • 新世纪20年国内心理统计方法研究回顾
    温忠麟1(),方杰2,沈嘉琦1,谭倚天1,李定欣1,马益铭11华南师范大学心理学院/心理应用研究中心,广州5106312广东财经大学人文与传播学院,广州510320收稿日期:2021-03-11发布日期:2021-06-25通讯作者:温忠麟E-mail:wenzl@scnu.edu.cn基金资助:国 ...
    本站小编 Free考研考试 2022-01-01
  • 心理与教育测验中异常作答处理的新技术: 混合模型方法
    刘玥1,刘红云2,3()1四川师范大学脑与心理科学研究院,成都6100662应用实验心理北京市重点实验室3北京师范大学心理学部,北京100875收稿日期:2020-10-23发布日期:2021-07-22通讯作者:刘红云E-mail:hyliu@bnu.edu.cn基金资助:国家自然科学基金项目(3 ...
    本站小编 Free考研考试 2022-01-01
  • 强迫性特征在药物成瘾行为中的易感性及其前额叶-反奖赏系统神经基础
    严万森(),刘苏姣,张冉冉,徐鹏贵州医科大学医学人文学院,贵阳550025收稿日期:2020-12-29发布日期:2021-06-25通讯作者:严万森E-mail:yanwansen@163.com基金资助:国家自然科学基金(32060195)Thesusceptibilityofcompulsiv ...
    本站小编 Free考研考试 2022-01-01
  • 情绪自旋及其心理健康功能
    张珊珊(),王婧怡,李昱汝天津职业技术师范大学职业教育学院,天津300222收稿日期:2020-07-20发布日期:2021-06-25通讯作者:张珊珊E-mail:zhangss945@126.com基金资助:天津市哲学社会科学规划项目(TJJX20-020)Affectspinanditsimp ...
    本站小编 Free考研考试 2022-01-01
  • 老年人的消极交往与心理健康
    徐潞杰1,2,张镇1,2()1中国科学院心理研究所行为科学院重点实验室,北京1001012中国科学院大学心理学系,北京100049收稿日期:2020-12-07发布日期:2021-06-25通讯作者:张镇E-mail:zhangz@psych.ac.cn基金资助:国家自然科学基金项目(7177415 ...
    本站小编 Free考研考试 2022-01-01
  • 语言加工过程中的观点采择及其认知机制
    隋雪,史汉文,李雨桐()辽宁师范大学心理学院,大连116029收稿日期:2020-09-25出版日期:2021-06-15发布日期:2021-04-25通讯作者:李雨桐E-mail:dearliyutong@163.com基金资助:教育部人文社会科学规划基金项目(19YJA190005);国家自然科 ...
    本站小编 Free考研考试 2022-01-01
  • 人们如何设想未来:未来情景思维对个体心理和行为的影响
    卢蕾安,王春生,任俊()浙江师范大学教育与人类发展学院心理系,金华321004收稿日期:2020-07-09出版日期:2021-06-15发布日期:2021-04-25通讯作者:任俊E-mail:drinren@163.com基金资助:国家社会科学基金“十三五”规划教育学一般课题“基于积极心理学理念 ...
    本站小编 Free考研考试 2022-01-01
  • 姓名对个体心理与行为的实际影响:证据和理论
    包寒吴霜,蔡华俭()中国科学院心理研究所人格与社会心理研究中心,北京100101中国科学院大学心理学系,北京100049收稿日期:2020-09-02出版日期:2021-06-15发布日期:2021-04-25通讯作者:蔡华俭E-mail:caihj@psych.ac.cn基金资助:国家社会科学基金 ...
    本站小编 Free考研考试 2022-01-01
  • 傅斯年的心理学探索及其贡献
    陈彦垒(),胡志坚聊城大学教育科学学院,山东聊城252059收稿日期:2020-08-13出版日期:2021-06-15发布日期:2021-04-25通讯作者:陈彦垒E-mail:chenyanlei@lcu.edu.cn基金资助:聊城市社科规划专项(ZXYB202002019)FuSsu-nien ...
    本站小编 Free考研考试 2022-01-01