删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多巴胺D2受体参与调节感觉门控的机制

本站小编 Free考研考试/2022-01-01

欧华星1,2, 陈伟海1,2()
1认知与人格教育部重点实验室
2西南大学心理学部, 重庆 400715
收稿日期:2020-08-07出版日期:2021-06-15发布日期:2021-04-25
通讯作者:陈伟海E-mail:whchen@swu.edu.cn

基金资助:中央高校基本科研业务费专项资金资助(SWU1709247)

Mechanisms underlying the role of D2 receptors in regulating sensory gating

OU Huaxing1,2, CHEN Weihai1,2()
1Key Laboratory of Cognition and Personality (SWU), Ministry of Education
2Faculty of Psychology, Southwest University, Chongqing 400715, China
Received:2020-08-07Online:2021-06-15Published:2021-04-25
Contact:CHEN Weihai E-mail:whchen@swu.edu.cn






摘要/Abstract


摘要: 精神分裂症是一种常见的病因不明的精神疾病。大量文献表明精神分裂症患者所表现出来的认知紊乱和思维异常等症状与感觉门控功能的缺失有密切的关系, 感觉门控是指在充满刺激的环境中, 从外界的感觉信息中过滤无关的感觉信息然后执行与注意力相关的认知过程, 以对显著的刺激做出反应。研究感觉门控的经典范式是震惊反射的前脉冲抑制。研究发现多巴胺D2受体可以参与调控前脉冲抑制的过程, 但是多巴胺D2受体参与调控前脉冲抑制的机制仍不清楚。探讨多巴胺D2受体参与调控感觉门控即前脉冲抑制的关键脑区、神经环路及分子机制, 有利于促进对精神分裂症感觉门控功能的深入研究。



图1前脉冲抑制的初级环路。听觉传入到下丘, 上丘接收到下丘声音刺激的传入并将其传递到脑桥脚被盖核, 脑桥脚被盖核发出神经纤维, 投射到震惊反射中枢的尾侧脑桥网状核并发挥对震惊反射抑制性的调节作用。
图1前脉冲抑制的初级环路。听觉传入到下丘, 上丘接收到下丘声音刺激的传入并将其传递到脑桥脚被盖核, 脑桥脚被盖核发出神经纤维, 投射到震惊反射中枢的尾侧脑桥网状核并发挥对震惊反射抑制性的调节作用。



图2中脑边缘皮质-纹状体-腹侧苍白球-脑桥回路(CSPP)回路。腹侧被盖区向边缘皮质(前额叶、杏仁核、海马)发出多巴胺能神经纤维, 而纹状体接受来自边缘皮质的谷氨酸能神经投射和腹侧被盖区的多巴胺能神经投射, 并发出GABA能神经投射到腹侧苍白球、脑桥脚被盖核以及腹侧被盖区, 从而实现对PPI的调控。
图2中脑边缘皮质-纹状体-腹侧苍白球-脑桥回路(CSPP)回路。腹侧被盖区向边缘皮质(前额叶、杏仁核、海马)发出多巴胺能神经纤维, 而纹状体接受来自边缘皮质的谷氨酸能神经投射和腹侧被盖区的多巴胺能神经投射, 并发出GABA能神经投射到腹侧苍白球、脑桥脚被盖核以及腹侧被盖区, 从而实现对PPI的调控。







[1] 杨阳, 司天梅. (2007). 震惊反射的前脉冲抑制与精神分裂症. 国际精神病学杂志, 34(2), 85-88.
[2] Aquino-Miranda, G., Rivera-Ramírez, N., Márquez-Gómez, R., Escamilla-Sánchez, J., González-Pantoja, R., Ramos- Languren, L., ... Arias-Monta?o, J. (2019). Histamine H receptor activation reduces the impairment in prepulse inhibition (PPI) of the acoustic startle response and Akt phosphorylation induced by MK-801 (dizocilpine), antagonist at N-Methyl-d-Aspartate (NMDA) receptors. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 94, 109653. doi: 10.1016/j.pnpbp.2019.109653
doi: 10.1016/j.pnpbp.2019.109653
[3] Arenas, M. C., Navarro-Francés, C. I., Montagud-Romero, S., Mi?arro, J., & Manzanedo, C. (2018). Baseline prepulse inhibition of the startle reflex predicts the sensitivity to the conditioned rewarding effects of cocaine in male and female mice. Psychopharmacology, 235(9), 2651-2663. doi: 10.1007/s00213-018-4959-8
doi: 10.1007/s00213-018-4959-8pmid: 29955900
[4] Auffret, M., Drapier, S., & Vérin, M. (2018). The many faces of apomorphine: Lessons from the past and challenges for the future. Drugs in Research and Development, 18(2), 91-107. doi: 10.1007/s40268-018-0230-3
doi: 10.1007/s40268-018-0230-3
[5] Azzopardi, E., Louttit, A., DeOliveira, C., Laviolette, S., & Schmid, S. (2018). The role of cholinergic midbrain neurons in startle and prepulse inhibition. The Journal of Neuroscience, 38(41), 8798-8808. doi: 10.1523/jneurosci.0984-18.2018
doi: 10.1523/jneurosci.0984-18.2018URL
[6] Beaulieu, J. M., Gainetdinov, R. R., & Caron, M. G. (2009). Akt/GSK3 signaling in the action of psychotropic drugs. Annual Review of Pharmacology and Toxicology, 49, 327-347. doi: 10.1146/annurev.pharmtox.011008.145634
doi: 10.1146/annurev.pharmtox.011008.145634URL
[7] Beaulieu, J. M., Sotnikova, T. D., Yao, W. D., Kockeritz, L., Woodgett, J. R., Gainetdinov, R. R., & Caron, M. G. (2004). Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proceedings of the National Academy of Sciences USA, 101(14), 5099-5104. doi: 10.1073/pnas.0307921101
doi: 10.1073/pnas.0307921101URL
[8] Bills, K. B., Obray, J. D., Clarke, T., Parsons, M., Brundage, J., Yang, C. H., ... Steffensen, S. C. (2020). Mechanical stimulation of cervical vertebrae modulates the discharge activity of ventral tegmental area neurons and dopamine release in the nucleus accumbens. Brain Stimulation, 13(2), 403-411. doi: 10.1016/j.brs.2019.11.012
doi: S1935-861X(19)30470-Xpmid: 31866493
[9] Braff, D. L. (2010). Prepulse inhibition of the startle reflex: A window on the brain in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 349-371. doi: 10.1007/7854_2010_61
doi: 10.1007/7854_2010_61
[10] Braff, D. L., Stone, C., Callaway, E., Geyer, M., Glick, I., & Bali, L. (1978). Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology, 15(4), 339-343. doi: 10.1111/j.1469-8986.1978.tb01390.x
doi: 10.1111/j.1469-8986.1978.tb01390.xpmid: 693742
[11] Brosda, J., Hayn, L., Klein, C., Koch, M., Meyer, C., Schallhorn, R., & Wegener, N. (2011). Pharmacological and parametrical investigation of prepulse inhibition of startle and prepulse elicited reactions in Wistar rats. Pharmacology, Biochemistry, and Behavior, 99(1), 22-28. doi: 10.1016/j.pbb.2011.03.017
doi: 10.1016/j.pbb.2011.03.017
[12] Chan, M. H., Chiu, P. H., Lin, C. Y., & Chen, H. H. (2012). Inhibition of glycogen synthase kinase-3 attenuates psychotomimetic effects of ketamine. Schizophrenia Research, 136, 96-103. doi: 10.1016/j.schres.2012.01.024
doi: 10.1016/j.schres.2012.01.024URL
[13] Culm, K. E., Lim, A. M., Onton, J. A., & Hammer, R.P., Jr (2003). Reduced G(i) and G(o) protein function in the rat nucleus accumbens attenuates sensorimotor gating deficits. Brain Research, 982(1),12-18. doi: 10.1016/s0006-8993(03)02880-4
doi: 10.1016/s0006-8993(03)02880-4URL
[14] Culm, K. E., Lugo-Escobar, N., Hope, B. T., & Hammer, R. P. , Jr. (2004). Repeated quinpirole treatment increases cAMP-dependent protein kinase activity and CREB phosphorylation in nucleus accumbens and reverses quinpirole-induced sensorimotor gating deficits in rats. Neuropsychopharmacology, 29(10), 1823-1830. doi: 10.1038/sj.npp.1300483
doi: 10.1038/sj.npp.1300483URL
[15] Ding, Y., Xu, N., Gao, Y. Y., Wu, Z. M., & Li, L. (2019). The role of the deeper layers of the superior colliculus in attentional modulations of prepulse inhibition. Behavioural Brain Research, 364, 106-113. doi: 10.1016/j.bbr.2019.01.052
doi: S0166-4328(18)31510-9pmid: 30707906
[16] Doherty, J. M., Masten, V. L., Powell, S. B., Ralph, R. J., Klamer, D., Low, M. J., & Geyer, M. A. (2008). Contributions of dopamine D1, D2, and D3 receptor subtypes to the disruptive effects of cocaine on prepulse inhibition in mice. Neuropsychopharmacology, 33(11), 2648-2656. doi: 10.1038/sj.npp.1301657
doi: 10.1038/sj.npp.1301657pmid: 18075489
[17] Du, Y., Wu, X., & Li, L. (2011). Differentially organized top-down modulation of prepulse inhibition of startle. The Journal of Neuroscience, 31(38), 13644-13653. doi: 10.1523/JNEUROSCI.1292-11.2011
doi: 10.1523/JNEUROSCI.1292-11.2011URL
[18] Ellenbroek, B. A., Budde, S., & Cools, A. R. (1996). Prepulse inhibition and latent inhibition: The role of dopamine in the medial prefrontal cortex. Neuroscience, 75(2),535-542. doi: 10.1016/0306-4522(96)00307-7.
doi: 10.1016/0306-4522URL
[19] Ellenbroek, B. A., Lubbers, L. J., & Cools, A. R. (2002). The role of hippocampal dopamine receptors in prepulse inhibition. The European Journal of Neuroscience, 15(7), 1237-1243. doi: 10.1046/j.1460-9568.2002.01948.x
doi: 10.1046/j.1460-9568.2002.01948.xURL
[20] Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M., & Gogos, J. A. (2004). Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nature Genetics, 36(2), 131-137. doi: 10.1038/ng1296
doi: 10.1038/ng1296URL
[21] Fendt, M., Li, L., & Yeomans, J. S. (2001). Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology, 156(2-3),216-224. doi: 10.1007/s002130100794
doi: 10.1007/s002130100794
[22] Fitzgerald, M., & Pickel, V. (2018). Adolescent isolation rearing produces a prepulse inhibition deficit correlated with expression of the NMDA GluN1 subunit in the nucleus accumbens. Brain Structure & Function, 223(7), 3169-3181. doi: 10.1007/s00429-018-1673-6
doi: 10.1007/s00429-018-1673-6
[23] Forcelli, P. A., West, E. A., Murnen, A. T., & Malkova, L. (2012). Ventral pallidum mediates amygdala-evoked deficits in prepulse inhibition. Behavioral Neuroscience, 126(2), 290-300. doi: 10.1037/a0026898
doi: 10.1037/a0026898pmid: 22250771
[24] Frau, R., Mosher, L. J., Bini, V., Pillolla, G., Pes, R., Saba, P., ... Bortolato, M. (2016). The neurosteroidogenic enzyme 5α-reductase modulates the role of D1 dopamine receptors in rat sensorimotor gating. Psychoneuroendocrinology, 63, 59-67. doi: 10.1016/j.psyneuen.2015.09.014
doi: 10.1016/j.psyneuen.2015.09.014URL
[25] Geyer, M. A., Swerdlow, N. R., Mansbach, R. S., & Braff, D. L. (1990). Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Research Bulletin, 25(3),485-498. doi: 10.1016/0361-9230(90)90241-q.
doi: 10.1016/0361-9230URL
[26] Graham, F. K. (1975). Presidential address, 1974. The more or less startling effects of weak prestimulation. Psychophysiology, 12(3), 238-248. doi: 10.1111/j.1469-8986.1975.tb01284.x
doi: 10.1111/j.1469-8986.1975.tb01284.xpmid: 1153628
[27] Hart, S., Zreik, M., Carper, R., & Swerdlow, N. R. (1998). Localizing haloperidol effects on sensorimotor gating in a predictive model of antipsychotic potency. Pharmacology, Biochemistry, and Behavior, 61(1),113-119. doi: 10.1016/s0091-3057(98)00079-3.
doi: 10.1016/s0091-3057
[28] Issy, A. C., Fonseca, J. R., Pardo, L. A., Stühmer, W., & del Bel, E. A. (2014). Hippocampal ether-à-go-go1 potassium channels blockade: Effects in the startle reflex and prepulse inhibition. Neuroscience Letters, 559, 13-17. doi: 10.1016/j.neulet.2013.11.026
doi: 10.1016/j.neulet.2013.11.026pmid: 24284010
[29] Kapfhamer, D., Berger, K. H., Hopf, F. W., Seif, T., Kharazia, V., Bonci, A., & Heberlein, U. (2010). Protein Phosphatase 2a and glycogen synthase kinase 3 signaling modulate prepulse inhibition of the acoustic startle response by altering cortical M-Type potassium channel activity. The Journal of Neuroscience, 30(26), 8830-8840. doi: 10.1523/jneurosci.1292-10.2010
doi: 10.1523/jneurosci.1292-10.2010URL
[30] Kesby, J. P., Eyles, D. W., McGrath, J. J., & Scott, J. G. (2018). Dopamine, psychosis and schizophrenia: The widening gap between basic and clinical neuroscience. Translational Psychiatry, 8(1), 30. doi: 10.1038/s41398-017-0071-9
doi: 10.1038/s41398-017-0071-9pmid: 29382821
[31] Khoja, S., Asatryan, L., Jakowec, M. W., & Davies, D. L. (2019). Dopamine receptor blockade attenuates purinergic P2X4 receptor-mediated prepulse inhibition deficits and underlying molecular mechanisms. Frontiers in Cellular Neuroscience, 13, 331. doi: 10.3389/fncel.2019.00331
doi: 10.3389/fncel.2019.00331URL
[32] Koch, M., & Bubser, M. (1994). Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. The European Journal of Neuroscience, 6(12), 1837-1845. doi: 10.1111/j.1460-9568.1994.tb00576.x
doi: 10.1111/j.1460-9568.1994.tb00576.xURL
[33] Kodsi, M. H., & Swerdlow, N. R. (1994). Quinolinic acid lesions of the ventral striatum reduce sensorimotor gating of acoustic startle in rats. Brain Research, 643(1-2),59-65. doi: 10.1016/0006-8993(94)90008-6.
doi: 10.1016/0006-8993URL
[34] Kodsi, M. H., & Swerdlow, N. R. (1995). Prepulse inhibition in the rat is regulated by ventral and caudodorsal striato-pallidal circuitry. Behavioral Neuroscience, 109(5), 912-928. doi: 10.1037//0735-7044.109.5.912
doi: 10.1037//0735-7044.109.5.912URL
[35] Kohl, S., Heekeren, K., Klosterkotter, J., & Kuhn, J. (2013). Prepulse inhibition in psychiatric disorders--apart from schizophrenia. Journal of Psychiatric Research, 47(4), 445-452. doi: 10.1016/j.jpsychires.2012.11.018
doi: 10.1016/j.jpsychires.2012.11.018pmid: 23287742
[36] Kretschmer, B. D., & Koch, M. (1998). The ventral pallidum mediates disruption of prepulse inhibition of the acoustic startle response induced by dopamine agonists, but not by NMDA antagonists. Brain Research, 798(1-2),204-210. doi: 10.1016/s0006-8993(98)00424-7.
doi: 10.1016/s0006-8993URL
[37] Lacroix, L., Spinelli, S., White, W., & Feldon, J. (2000). The effects of ibotenic acid lesions of the medial and lateral prefrontal cortex on latent inhibition, prepulse inhibition and amphetamine-induced hyperlocomotion. Neuroscience, 97(3),459-468. doi: 10.1016/s0306-4522(00)00013-0.
doi: 10.1016/s0306-4522URL
[38] Larrauri, J., & Schmajuk, N. (2006). Prepulse inhibition mechanisms and cognitive processes: A review and model. Experientia Supplementum, 98, 245-278. doi: 10.1007/978-3-7643-7772-4_12
doi: 10.1007/978-3-7643-7772-4_12
[39] Li, L., & Frost, B. J. (2000). Azimuthal directional sensitivity of prepulse inhibition of the pinna startle reflex in decerebrate rats. Brain Research Bulletin, 51(1),95-100. doi: 10.1016/s0361-9230(99)00215-4
doi: 10.1016/s0361-9230(99)00215-4URL
[40] Li, M., He, W., & Chen, J. (2011). Time course of prepulse inhibition disruption induced by dopamine agonists and NMDA antagonists: Effects of drug administration regimen. Pharmacology, Biochemistry, and Behavior, 99(3), 509-518. doi: 10.1016/j.pbb.2011.05.001
doi: 10.1016/j.pbb.2011.05.001
[41] Li, M., Xue, X., Shao, S., Shao, F., & Wang, W. (2013). Cognitive, emotional and neurochemical effects of repeated maternal separation in adolescent rats. Brain Research, 1518, 82-90. doi: 10.1016/j.brainres.2013.04.026
doi: 10.1016/j.brainres.2013.04.026URL
[42] Lipina, T. V., Kaidanovich-Beilin, O., Patel, S., Wang, M., Clapcote, S. J., Liu, F., Woodgett, J. R., & Roder, J. C. (2011). Genetic and pharmacological evidence for schizophrenia-related Disc1 interaction with GSK-3. Synapse, 65(3), 234-248. doi: 10.1002/syn.20839
doi: 10.1002/syn.20839URL
[43] Lipska, B. K., Swerdlow, N. R., Geyer, M. A., Jaskiw, G. E., Braff, D. L., & Weinberger, D. R. (1995). Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology, 122(1), 35-43. doi: 10.1007/bf02246439
doi: 10.1007/bf02246439URL
[44] Liu, K., & Steketee, J. D. (2011). Repeated exposure to cocaine alters medial prefrontal cortex dopamine D?-like receptor modulation of glutamate and dopamine neurotransmission within the mesocorticolimbic system. Journal of Neurochemistry, 119(2), 332-341. doi: 10.1111/j.1471-4159.2011.07362.x
doi: 10.1111/j.1471-4159.2011.07362.xURL
[45] Liu, Y. P., Yang, Y. Y., Wan, F. J., & Tung, C. S. (2018). Importance of intervention timing in the effectiveness of antipsychotics. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 81, 493-500. doi: 10.1016/j.pnpbp.2017.02.003
doi: 10.1016/j.pnpbp.2017.02.003
[46] Mansbach, R. S., Braff, D. L., & Geyer, M. A. (1989). Prepulse inhibition of the acoustic startle response is disrupted by N-ethyl-3,4-methylenedioxyamphetamine (MDEA) in the rat. European Journal of Pharmacology, 167(1), 49-55. doi: 10.1016/0014-2999(89)90746-2
doi: 10.1016/0014-2999(89)90746-2URL
[47] Mao, Z., Bo, Q., Li, W., Wang, Z., Ma, X., & Wang, C. (2019). Prepulse inhibition in patients with bipolar disorder: A systematic review and meta-analysis. BioMed Central Psychiatry, 19(1), 282. doi: 10.1186/s12888-019-2271-8
doi: 10.1186/s12888-019-2271-8
[48] Maple, A. M., Call, T., Kimmel, P. C., & Hammer, R. P. , Jr. (2017). Effects of repeated ropinirole treatment on phencyclidine-induced hyperlocomotion, prepulse inhibition deficits, and social avoidance in rats. The Journal of Pharmacology and Experimental Therapeutics, 361(1), 109-114. doi: 10.1124/jpet.116.238634
doi: 10.1124/jpet.116.238634URL
[49] Mohr, D., Pilz, P. K. D., Plappert, C. F., & Fendt, M. (2007). Accumbal dopamine D2 receptors are important for sensorimotor gating in C3H mice. Neuroreport, 18(14), 1493-1497. doi: 10.1097/WNR.0b013e3282e9a863
doi: 10.1097/WNR.0b013e3282e9a863URL
[50] Mosher, L. J., Cadeddu, R., Yen, S., Staudinger, J. L., Traccis, F., Fowler, S., ... Bortolato, M. (2019). Allopregnanolone is required for prepulse inhibition deficits induced by D dopamine receptor activation. Psychoneuroendocrinology, 108, 53-61. doi: 10.1016/j.psyneuen.2019.06.009
doi: S0306-4530(19)30172-6pmid: 31228750
[51] Mosher, L. J., Frau, R., Pardu, A., Pes, R., Devoto, P., & Bortolato, M. (2016). Selective activation of D1 dopamine receptors impairs sensorimotor gating in Long-Evans rats. British Journal of Pharmacology, 173(13), 2122-2134. doi: 10.1111/bph.13232
doi: 10.1111/bph.13232pmid: 26101934
[52] Osterbog, T. B., On, D. M., Oliveras, I., Rio-Alamos, C., Sanchez-Gonzalez, A., Tapias-Espinosa, C., ... Aznar, S. (2020). Metabotropic glutamate receptor 2 and dopamine receptor 2 gene expression predict sensorimotor gating response in the genetically heterogeneous NIH-HS rat strain. Molecular Neurobiology, 57(3), 1516-1528. doi: 10.1007/s12035-019-01829-w
doi: 10.1007/s12035-019-01829-wURL
[53] Qu, Y., Swerdlow, N. R., Weber, M., Stouffer, D., & Parsons, L. H. (2008). Quinelorane, a dopamine D3/D2 receptor agonist, reduces prepulse inhibition of startle and ventral pallidal GABA efflux: Time course studies. Pharmacology, Biochemistry, and Behavior, 90(4), 686-690. doi: 10.1016/j.pbb.2008.05.012
doi: 10.1016/j.pbb.2008.05.012
[54] Ralph, R. J., & Caine, S. B. (2005). Dopamine D1 and D2 agonist effects on prepulse inhibition and locomotion: comparison of Sprague-Dawley rats to Swiss-Webster, 129X1/SvJ, C57BL/6J, and DBA/2J mice. The Journal of Pharmacology and Experimental Therapeutics, 312(2), 733-741. doi: 10.1124/jpet.104.074468
doi: 10.1124/jpet.104.074468URL
[55] Ralph, R. J., & Caine, S. B. (2007). Effects of selective dopamine D1-like and D2-like agonists on prepulse inhibition of startle in inbred C3H/HeJ, SPRET/EiJ, and CAST/EiJ mice. Psychopharmacology, 191(3), 731-739. doi: 10.1007/s00213-006-0511-3
doi: 10.1007/s00213-006-0511-3URL
[56] Ralph, R. J., Paulus, M. P., & Geyer, M. A. (2001). Strain- specific effects of amphetamine on prepulse inhibition and patterns of locomotor behavior in mice. The Journal of Pharmacology and Experimental Therapeutics, 298(1), 148-155. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11408536
[57] Rodrigues, S., Salum, C., & Ferreira, T. L. (2017). Dorsal striatum D1-expressing neurons are involved with sensorimotor gating on prepulse inhibition test. Journal of Psychopharmacology, 31(4), 505-513. doi: 10.1177/0269881116686879
doi: 10.1177/0269881116686879URL
[58] Rohleder, C., Wiedermann, D., Neumaier, B., Drzezga, A., Timmermann, L., Graf, R., ... Endepols, H. (2016). The functional networks of prepulse inhibition: neuronal connectivity analysis based on FDG-PET in awake and unrestrained rats. Frontiers in Behavioral Neuroscience, 10, 148. doi: 10.3389/fnbeh.2016.00148
doi: 10.3389/fnbeh.2016.00148pmid: 27493627
[59] Salum, C., Issy, A. C., Brand?o, M. L., Guimar?es, F. S., & Bel, E. A. (2011). Nitric oxide modulates dopaminergic regulation of prepulse inhibition in the basolateral amygdala. Journal of Psychopharmacology, 25(12), 1639-1648. doi: 10.1177/0269881110379282
doi: 10.1177/0269881110379282
[60] Santana, N., & Artigas, F. (2017). Laminar and cellular distribution of monoamine receptors in rat medial prefrontal cortex. Frontiers in Neuroanatomy, 11, 87. doi: 10.3389/fnana.2017.00087
doi: 10.3389/fnana.2017.00087pmid: 29033796
[61] Sauve, G., Lavigne, K. M., Pochiet, G., Brodeur, M. B., & Lepage, M. (2020). Efficacy of psychological interventions targeting cognitive biases in schizophrenia: A systematic review and meta-analysis. Clinical Psychology Review, 78, 101854. doi: 10.1016/j.cpr.2020.101854
doi: 10.1016/j.cpr.2020.101854URL
[62] Sato, K. (2020). Why is prepulse inhibition disrupted in schizophrenia? Medical Hypotheses, 143, 109901. doi: 10.1016/j.mehy.2020.109901
doi: 10.1016/j.mehy.2020.109901URL
[63] Shen, H. W., Hagino, Y., Kobayashi, H., Shinohara-Tanaka, K., Ikeda, K., Yamamoto, H., ... Sora, I. (2004). Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology, 29(10), 1790-1799. doi: 10.1038/sj.npp.1300476
doi: 10.1038/sj.npp.1300476URL
[64] Stevenson, C. W., & Gratton, A. (2004). Role of basolateral amygdala dopamine in modulating prepulse inhibition and latent inhibition in the rat. Psychopharmacology, 176(2), 139-145. doi: 10.1007/s00213-004-1879-6
doi: 10.1007/s00213-004-1879-6URL
[65] Svenningsson, P., Tzavara, E. T., Carruthers, R., Rachleff, I., Wattler, S., Nehls, M., McKinzie, D. L., Fienberg, A. A., Nomikos, G. G., & Greengard, P. (2003). Diverse psychotomimetics act through a common signaling pathway. Science, 302(5649), 1412-1415. doi: 10.1126/science.1089681
doi: 10.1126/science.1089681URL
[66] Swerdlow, N. R., Braff, D., & Geyer, M. A. (2016). Sensorimotor gating of the startle reflex: What we said 25 years ago, what has happened since then, and what comes next. Journal of Psychopharmacology, 30(11), 1072-1081. doi: 10.1177/0269881116661075
doi: 10.1177/0269881116661075URL
[67] Swerdlow, N. R., Breier, M. R., & Saint Marie, R. L. S. (2011). Probing the molecular basis for an inherited sensitivity to the startle-gating disruptive effects of apomorphine in rats. Psychopharmacology, 216(3), 401-410. doi: 10.1007/s00213-011-2228-1
doi: 10.1007/s00213-011-2228-1pmid: 21365203
[68] Swerdlow, N. R., Caine, S. B., & Geyer, M. A. (1992). Regionally selective effects of intracerebral dopamine infusion on sensorimotor gating of the startle reflex in rats. Psychopharmacology, 108(1-2),189-195. doi: 10.1007/bf02245306
doi: 10.1007/bf02245306URL
[69] Swerdlow, N. R., Light, G. A., Thomas, M. L., Sprock, J., Calkins, M. E., Green, M. F., ... Braff, D. L. (2018). Deficient prepulse inhibition in schizophrenia in a multi-site cohort: Internal replication and extension. Schizophrenia Research, 198, 6-15. doi: 10.1016/j.schres.2017.05.013
doi: S0920-9964(17)30272-4pmid: 28549722
[70] Swerdlow, N. R., Taaid, N., Halim, N., Randolph, E., Kim, Y. K., & Auerbach, P. (2000). Hippocampal lesions enhance startle gating-disruptive effects of apomorphine in rats: A parametric assessment. Neuroscience, 96(3),523-536. doi: 10.1016/s0306-4522(99)00528-x
doi: 10.1016/s0306-4522(99)00528-xpmid: 10717433
[71] Tapias-Espinosa, C., Río-álamos, C., Sánchez-González, A., Oliveras, I., Sampedro-Viana, D., Castillo-Ruiz, M., ... Fernández-Teruel, A. (2019). Schizophrenia-like reduced sensorimotor gating in intact inbred and outbred rats is associated with decreased medial prefrontal cortex activity and volume. Neuropsychopharmacology, 44(11), 1975-1984. doi: 10.1038/s41386-019-0392-x
doi: 10.1038/s41386-019-0392-xpmid: 30986819
[72] Taura, J., Valle-Leon, M., Sahlholm, K., Watanabe, M., van Craenenbroeck, K., Fernandez-Duenas, V., ... Ciruela, F. (2018). Behavioral control by striatal adenosine A2A -dopamine D2 receptor heteromers. Genes, Brain, and Behavior, 17(4), e12432. doi: 10.1111/gbb.12432
doi: 10.1111/gbb.12432
[73] Thompson, S. L., & Dulawa, S. C. (2019). Dissecting the roles of β-arrestin2 and GSK-3 signaling in 5-HT1BR- mediated perseverative behavior and prepulse inhibition deficits in mice. PLoS One, 14(2), e0211239. doi: 10.1371/journal.pone.0211239
doi: 10.1371/journal.pone.0211239URL
[74] Valton, V., Romaniuk, L., Douglas Steele, J., Lawrie, S., & Series, P. (2017). Comprehensive review: Computational modelling of schizophrenia. Neuroscience and Biobehavioral Reviews, 83, 631-646. doi: 10.1016/j.neubiorev.2017.08.022
doi: 10.1016/j.neubiorev.2017.08.022URL
[75] van der Elst, M., Wunderink, Y. S., Ellenbroek, B. A., & Cools, A. R. (2007). Differences in the cellular mechanism underlying the effects of amphetamine on prepulse inhibition in apomorphine-susceptible and apomorphine- unsusceptible rats. Psychopharmacology, 190(1), 93-102. doi: 10.1007/s00213-006-0587-9
doi: 10.1007/s00213-006-0587-9URL
[76] Vinkers, C. H., Bijlsma, E. Y., Houtepen, L. C., Westphal, K. G. C., Veening, J. G., Groenink, L., & Olivier, B. (2010). Medial amygdala lesions differentially influence stress responsivity and sensorimotor gating in rats. Physiology & Behavior, 99(3), 395-401. doi: 10.1016/j.physbeh.2009.12.006
doi: 10.1016/j.physbeh.2009.12.006URL
[77] Wan, F. J., & Swerdlow, N. R. (1993). Intra-accumbens infusion of quinpirole impairs sensorimotor gating of acoustic startle in rats. Psychopharmacology, 113(1), 103-109. doi: 10.1007/bf02244341
doi: 10.1007/bf02244341URL
[78] Wang, J., Li, G., Xu, Y., & Zhang, W. N. (2015). Hyperactivity and disruption of prepulse inhibition induced by NMDA infusion of the rat ventral hippocampus: Comparison of uni- and bilateral stimulation. Neuroscience Letters, 594, 150-154. doi: 10.1016/j.neulet.2015.03.066
doi: 10.1016/j.neulet.2015.03.066pmid: 25841789
[79] Wang, M., Pei, L., Fletcher, P. J., Kapur, S., Seeman, P., & Liu, F. (2010). Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: Increased dopamine D2 receptor dimerization. Molecular Brain, 3, 25. doi: 10.1186/1756-6606-3-25
doi: 10.1186/1756-6606-3-25
[80] Xue, C., Li, X.-H., Liu, M.-Q., Yang, X.-C., Li, G.-H., Xu, R.-J., ... Zhang, W.-N., (2020). Enhancing excitatory projections from the ventral subiculum to the nucleus accumbens shell contribute to the MK-801-induced impairment of prepulse inhibition. Neuroscience Letters, 731, 135024. doi: 10.1016/j.neulet.2020.135024
doi: 10.1016/j.neulet.2020.135024URL




[1]李谷静, 张丽蓉, 米莉, 贺辉, 卢竞, 罗程, 尧德中. 舞动治疗:一种自下而上的精神分裂症干预探索[J]. 心理科学进展, 2021, 29(8): 1371-1380.
[2]雷铭, 李朋波. 不同注意形式调节听感觉门控的神经机制[J]. 心理科学进展, 2020, 28(8): 1232-1245.
[3]郑泓, 蒲城城, 王毅, 陈楚侨. 基于脑结构像的精神分裂症机器学习分类[J]. 心理科学进展, 2020, 28(2): 252-265.
[4]王盛, 陈雅弘, 王锦琰. 动物前注意加工模型的建立及评价: 基于精神类疾病损伤[J]. 心理科学进展, 2020, 28(12): 2027-2039.
[5]曹艺, 杨小虎. 精神分裂症患者的语音感知[J]. 心理科学进展, 2019, 27(6): 1025-1035.
[6]邓潇斐, 郭建友. Parvalbumin阳性中间神经元缺陷在精神分裂症病理机制中的作用[J]. 心理科学进展, 2018, 26(11): 1992-2002.
[7]刘昕鹤;田琳;刘佳琳;李新旺. 干预胆碱M受体对药物成瘾的影响及其与多巴胺的关系[J]. 心理科学进展, 2016, 24(8): 1217-1227.
[8]朱传林;李萍;罗文波;齐正阳;何蔚祺. 精神分裂症患者的情绪调节[J]. 心理科学进展, 2016, 24(4): 556-572.
[9]黄文强;杨沙沙;于萍. 风险决策的神经机制: 基于啮齿类动物研究[J]. 心理科学进展, 2016, 24(11): 1767-1779.
[10]张景焕;张木子;张舜;任菲菲. 多巴胺、5-羟色胺通路相关基因及家庭环境对创造力的影响及其作用机制[J]. 心理科学进展, 2015, 23(9): 1489-1498.
[11]郭亚飞;金盛华;王建平;吴林桦;艾迪玛. DSM-5精神分裂症谱系的新变化:类别与维度之争[J]. 心理科学进展, 2015, 23(8): 1428-1436.
[12]秦幸娜;李新旺;田琳;孙金玲. 多巴胺对动物冲动性的影响[J]. 心理科学进展, 2015, 23(2): 241-251.
[13]廉彬;高军;陈伟海;杨瑜;乔婧;李鸣. 抗精神病药对大鼠母性行为的影响及其机制[J]. 心理科学进展, 2015, 23(11): 1942-1955.
[14]杨玲;张更生;赵鑫. 海洛因依赖者抑制控制功能的损伤机制及其可逆性[J]. 心理科学进展, 2014, 22(3): 439-447.
[15]汤明明;林文娟. 缰核在抑郁症中的作用:研究和治疗的新途径[J]. 心理科学进展, 2013, 21(7): 1213-1219.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5461
相关话题/心理 科学 神经 动物 过程

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 人们如何设想未来:未来情景思维对个体心理和行为的影响
    卢蕾安,王春生,任俊()浙江师范大学教育与人类发展学院心理系,金华321004收稿日期:2020-07-09出版日期:2021-06-15发布日期:2021-04-25通讯作者:任俊E-mail:drinren@163.com基金资助:国家社会科学基金“十三五”规划教育学一般课题“基于积极心理学理念 ...
    本站小编 Free考研考试 2022-01-01
  • 姓名对个体心理与行为的实际影响:证据和理论
    包寒吴霜,蔡华俭()中国科学院心理研究所人格与社会心理研究中心,北京100101中国科学院大学心理学系,北京100049收稿日期:2020-09-02出版日期:2021-06-15发布日期:2021-04-25通讯作者:蔡华俭E-mail:caihj@psych.ac.cn基金资助:国家社会科学基金 ...
    本站小编 Free考研考试 2022-01-01
  • 傅斯年的心理学探索及其贡献
    陈彦垒(),胡志坚聊城大学教育科学学院,山东聊城252059收稿日期:2020-08-13出版日期:2021-06-15发布日期:2021-04-25通讯作者:陈彦垒E-mail:chenyanlei@lcu.edu.cn基金资助:聊城市社科规划专项(ZXYB202002019)FuSsu-nien ...
    本站小编 Free考研考试 2022-01-01
  • 群体面孔情绪感知的神经机制
    何蔚祺(),李帅霞,赵东方辽宁师范大学脑与认知神经科学研究中心;辽宁省脑与认知神经科学重点实验室,大连116029收稿日期:2020-09-01出版日期:2021-05-15发布日期:2021-03-30通讯作者:何蔚祺E-mail:weiqi79920686@sina.com基金资助:国家自然科学 ...
    本站小编 Free考研考试 2022-01-01
  • 拖延行为的发展认知机制及神经基础
    冯廷勇,王雪珂,苏缇()西南大学心理学部,重庆400715收稿日期:2020-06-12出版日期:2021-04-15发布日期:2021-02-22基金资助:国家自然科学基金面上项目(31971026);中央高校基本科研业务费专项资金项目(SWU2009104);中央高校基本科研业务费专项资金项目( ...
    本站小编 Free考研考试 2022-01-01
  • 基于社交媒体数据的心理指标识别建模: 机器学习的方法
    苏悦1,2,刘明明1,3,赵楠1,刘晓倩1,朱廷劭1,2()1中国科学院心理研究所,北京1001012中国科学院大学心理学系,北京1000493联想研究院,北京100094收稿日期:2020-01-14出版日期:2021-04-15发布日期:2021-02-22基金资助:国家社科基金重点项目(17A ...
    本站小编 Free考研考试 2022-01-01
  • 抑制引起的遗忘及其神经机制
    关旭旭,王红波()河南大学认知、脑与健康研究所;河南大学心理与行为研究所;河南大学教育科学学院,开封475004收稿日期:2020-05-06出版日期:2021-04-15发布日期:2021-02-22基金资助:教育部人文社会科学研究项目(20YJC190019)Neuralmechanismsof ...
    本站小编 Free考研考试 2022-01-01
  • 创造力产生过程中的神经振荡机制
    叶超群,林郁泓,刘春雷()曲阜师范大学心理学院,山东曲阜273165收稿日期:2020-03-10出版日期:2021-04-15发布日期:2021-02-22基金资助:山东省自然科学基金面上项目(ZR2019MC048);曲阜师范大学研究生学位论文科研创新资助基金项目Neuraloscillatio ...
    本站小编 Free考研考试 2022-01-01
  • 人际互动中社会学习的计算神经机制
    黎穗卿,陈新玲,翟瑜竹,张怡洁,章植鑫,封春亮()教育部脑认知与教育科学重点实验室(华南师范大学);华南师范大学心理学院;华南师范大学心理应用研究中心;华南师范大学广东省心理健康与认知科学重点实验室,广州510631收稿日期:2020-08-10出版日期:2021-04-15发布日期:2021-02 ...
    本站小编 Free考研考试 2022-01-01
  • 基于游戏的心理测评
    徐俊怡,李中权()南京大学社会学院心理学系,南京210023收稿日期:2020-05-24出版日期:2021-03-15发布日期:2021-01-26通讯作者:李中权E-mail:zqli@nju.edu.cn基金资助:教育部人文社科规划基金项目(20YJA190004);江苏省教育厅高校哲学社会科 ...
    本站小编 Free考研考试 2022-01-01