删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

语言经验对概率词切分的影响

本站小编 Free考研考试/2022-01-01

于文勃1, 王璐1, 程幸悦1, 王天琳2, 张晶晶3, 梁丹丹1()
1南京师范大学文学院, 南京 210097
2纽约州立大学奥尔巴尼分校教育学院, 纽约 12222
3南京师范大学心理学院, 南京 210097
收稿日期:2020-06-28出版日期:2021-05-15发布日期:2021-03-30
通讯作者:梁丹丹E-mail:ldd233@163.com

基金资助:江苏省社会科学基金项目成果(19YYC003);江苏高校优势学科建设工程资助项目(PAPD)

The influence of linguistic experience on statistical word segmentation

YU Wenbo1, WANG Lu1, CHENG Xingyue1, WANG Tianlin2, ZHANG Jingjing3, LIANG Dandan1()
1School of Chinese Language and Culture, Nanjing Normal University, Nanjing 210097, China
2School of Education, University at Albany, State University of New York, New York 12222, USA
3School of Psychology, Nanjing Normal University, Nanjing 210097, China
Received:2020-06-28Online:2021-05-15Published:2021-03-30
Contact:LIANG Dandan E-mail:ldd233@163.com






摘要/Abstract


摘要: 概率词切分指个体利用音节间的转换概率切分语流、发现词语边界的过程。经典的概率词切分研究多采用“学习-测试”范式, 首先要求被试切分一段无意义人工语言, 随后对切分效果进行测试。近年来, 研究者逐渐关注语言经验对概率词切分的影响, 具体包括语音经验和被试掌握的语言知识两方面。今后的研究, 一方面可以更多地关注普通话母语者的语言经验如何作用于概率词切分过程; 另一方面还可以在语言经验的分类上进行拓展, 细分群体语言经验和个体语言经验的影响。



图1索绪尔对口语词切分的观点 (资料来源:de Saussure & Baskin, 1916)
图1索绪尔对口语词切分的观点 (资料来源:de Saussure & Baskin, 1916)







[1] 冯胜利. (1998). 论汉语的 “自然音步”. 中国语文, (1),40-47.
[2] 李斌, 刘雪扬. (2018). 基于《汉语大词典》的汉语词汇历时演变计量研究. 南京师大学报(社会科学版), (5),152-160.
[3] 李利, 李亚娴, 康宇, 王莉. (2020). 声调语言经验在汉语二语者普通话声调感知中的作用. 华南师范大学学报(社会科学版), (1),83-91.
[4] 廖毅, 张薇. (2019). 母语背景在汉语声调感知中的影响——以英语和粤语背景学习者为例. 汉语学习, (1),75-86.
[5] 林焘, 王理嘉. (1992). 语音学教程. 北京: 北京大学出版社.
[6] 王婷, 王丹, 张积家, 崔健爱. (2017). “各说各话”的语言经验对景颇族大学生执行功能的影响. 心理学报, 49(11),1392-1403.
[7] 于文勃, 梁丹丹. (2018). 口语加工中的词语切分线索. 心理科学进展, 26(10),1765-1774.
[8] 张珊珊, 杨亦鸣. (2012). 从记忆编码加工看人脑中的基本语言单位——一项基于单音节语言单位的ERPs研究. 外语与外语教学, (2),1-6.
[9] Antovich, D. M., & Estes, K. G. (2017). Learning across languages: Bilingual experience supports dual language statistical word segmentation. Developmental Science, 21(2),e12548. doi: 10.1111/desc.12548.
doi: 10.1111/desc.12548URL
[10] Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4),390-412.
doi: 10.1016/j.jml.2007.12.005URL
[11] Batterink, L. J. (2017). Rapid statistical learning supporting word extraction from continuous speech. Psychological Science, 28(7),921-928.
doi: 10.1177/0956797617698226URLpmid: 28493810
[12] Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A. (2015). Implicit and explicit contributions to statistical learning. Journal of Memory and Language, 83,62-78.
doi: 10.1016/j.jml.2015.04.004URLpmid: 26034344
[13] Batterink, L. J., & Paller, K. A. (2017). Online neural monitoring of statistical learning. Cortex, 90,31-45.
URLpmid: 28324696
[14] Bogaerts, L., Siegelman, N., & Frost, R. (2016). Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities. Psychonomic Bulletin & Review, 23(4),1250-1256.
URLpmid: 26743060
[15] Bonatti, L. L., Pe?a, M., Nespor, M., & Mehler, J. (2005). Linguistic constraints on statistical computations: The role of consonants and vowels in continuous speech processing. Psychological Science, 16(6),451-459.
doi: 10.1111/j.0956-7976.2005.01556.xURLpmid: 15943671
[16] Bortfeld, H., Morgan, J. L., Golinkoff, R. M., & Rathbun, K. (2005). Mommy and me: familiar names help launch babies into speech-stream segmentation. Psychological Science, 16(4),298-304.
doi: 10.1111/j.0956-7976.2005.01531.xURLpmid: 15828977
[17] Bosseler, A. N., Teinonen, T., Tervaniemi, M., & Huotilainen, M. (2016). Infant directed speech enhances statistical learning in newborn infants: An ERP study. PLoS ONE, 11(9),e0162177. doi: 10.1371/journal.pone.0162177.
URLpmid: 27617967
[18] Buiatti, M., Pe?a, M., & Dehaene-Lambertz, G. (2009). Investigating the neural correlates of continuous speech computation with frequency-tagged neuroelectric responses. NeuroImage, 44(2),509-519.
URLpmid: 18929668
[19] Cutler, A., & Norris, D. (1988). The role of strong syllables in segmentation for lexical access. Journal of Experimental Psychology: Human Perception and Performance, 14(1),113-121.
doi: 10.1037/0096-1523.14.1.113URL
[20] de Saussure, F., & Baskin, W. (1916). Course in general linguistics. London, UK: Duckworth.
[21] Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1),158-164.
doi: 10.1038/nn.4186URLpmid: 26642090
[22] Emberson, L. L., Misyak, J. B., Schwade, J. A., Christiansen, M. H., & Goldstein, M. H. (2019). Comparing statistical learning across perceptual modalities in infancy: An investigation of underlying learning mechanism (s). Developmental Science, 22(6),e12847. doi: 10.1111/ DESC.12847.
doi: 10.1111/desc.12847URLpmid: 31077516
[23] Endress, A. D., & Langus, A. (2017). Transitional probabilities count more than frequency, but might not be used for memorization. Cognitive Psychology, 92,37-64.
doi: 10.1016/j.cogpsych.2016.11.004URLpmid: 27907807
[24] Erickson, L. C., Kaschak, M. P., Thiessen, E. D., & Berry, C. A. S. (2016). Individual differences in statistical learning: Conceptual and measurement issues. Collabra: Psychology, 2(1),14. doi: 10.1525/ collabra.41.
[25] Erickson, L. C., Thiessen, E. D., & Estes, K. G. (2014). Statistically coherent labels facilitate categorization in 8-month-olds. Journal of Memory and Language, 72,49-58.
doi: 10.1016/j.jml.2014.01.002URL
[26] Estes, K. G., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to newly segmented words? Statistical segmentation and word learning. Psychological Science, 18(3),254-260.
URLpmid: 17444923
[27] Estes, K. G., Gluck, C. W., & Bastos, C. (2015). Flexibility in statistical word segmentation: Finding words in foreign speech. Language Learning and Development, 11(3),252- 269.
[28] Estes, K. G., & Lew-Williams, C. (2015). Listening through voices: Infant statistical word segmentation across multiple speakers. Developmental Psychology, 51(11),1517-1528.
doi: 10.1037/a0039725URLpmid: 26389607
[29] Franco, A., Eberlen, J., Destrebecqz, A., Cleeremans, A., & Bertels, J. (2015). Rapid serial auditory presentation: A new measure of statistical learning in speech segmentation. Experimental Psychology, 62,346-351.
doi: 10.1027/1618-3169/a000295URLpmid: 26592534
[30] Frost, R., Armstrong, B. C., & Christiansen, M. H. (2020). Statistical learning research: A critical review and possible new directions. Psychological Bulletin, 145(12),1128-1153.
doi: 10.1037/bul0000210URLpmid: 31580089
[31] Frost, R. L. A., Monaghan, P., & Christiansen, M. H. (2019). Mark my words: High frequency marker words impact early stages of language learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(10),1883-1898.
URLpmid: 30652894
[32] Gómez, D. M., Mok, P., Ordin, M., Mehler, J., & Nespor, M. (2017). Statistical speech segmentation in tone languages: The role of lexical tones. Language & Speech, 61(1),84-96.
URLpmid: 28486862
[33] Gout, A., Christophe, A., & Morgan, J. L. (2004). Phonological phrase boundaries constrain lexical access II. Infant data. Journal of Memory and Language, 51(4),548-567.
doi: 10.1016/j.jml.2004.07.002URL
[34] Gout, A., Christophe, A., & Morgan, J. L. (2004). Phonological phrase boundaries constrain lexical access II. Infant data. Journal of Memory and Language, 51(4),548-567.
doi: 10.1016/j.jml.2004.07.002URL
[35] Hoch, L., Tyler, M. D., & Tillmann, B. (2013). Regularity of unit length boosts statistical learning in verbal and nonverbal artificial languages. Psychonomic Bulletin & Review, 20(1),142-147.
URLpmid: 22890871
[36] Johnson, E. K., & Tyler, M. D. (2010). Testing the limits of statistical learning for word segmentation. Development Science, 13(2),339-345.
doi: 10.1111/desc.2010.13.issue-2URL
[37] Kurumada, C., Meylan, S. C., & Frank, M. C. (2011). Zipfian word frequencies support statistical word segmentation. Proceedings of the Annual Meeting of the Cognitive Science Society, 33,2667-2672.Retrieved from https:// escholarship.org/uc/item/58j0m9rq.
[38] Lew-Williams, C., & Saffran, J. R. (2012). All words are not created equal: Expectations about word length guide infant statistical learning. Cognition, 122(2),241-246.
URLpmid: 22088408
[39] Li, M., Xu, Y., Luo, X., Zeng, J., & Han, Z. (2020). Linguistic experience acquisition for novel stimuli selectively activates the neural network of the visual word form area. NeuroImage, 215. doi: 10.1016/j.neuroimage. 2020.116838.
doi: 10.1016/j.neuroimage.2020.116841URLpmid: 32283274
[40] Magezi, D. A. (2015). Linear mixed-effects models for within-participant psychology experiments: An introductory tutorial and free, graphical user interface (LMMgui). Frontiers in Psychology, 6. doi: 10.3389/FPSYG.2015. 00002.
doi: 10.3389/fpsyg.2015.02034URLpmid: 26834666
[41] McQueen, J. M. (1998). Segmentation of continuous speech using phonotactics. Journal of Memory and Language, 39(1),21-46.
[42] Nazzi, T., Dilley, L. C., Jusczyk, A. M., Shattuck-Hufnagel, S., & Jusczyk, P. W. (2005). English-learning infants’ segmentation of verbs from fluent speech. Language and Speech, 48(3),279-298.
[43] Onnis, L., & Thiessen, E. D. (2013). Language experience changes subsequent learning. Cognition, 126(2),268-284.
URLpmid: 23200510
[44] Palmer, S. D., Hutson, J., White, L., & Mattys, S. L. (2019). Lexical knowledge boosts statistically-driven speech segmentation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(1),139-146.
[45] Palmer, S. D., & Mattys, S. L. (2016). Speech segmentation by statistical learning is supported by domain-general processes within working memory. The Quarterly Journal of Experimental Psychology, 69(12),2390-2401.
doi: 10.1080/17470218.2015.1112825URLpmid: 27167308
[46] Potter, C. E., Wang, T., & Saffran, J. R. (2017). Second language experience facilitates statistical learning of novel linguistic materials. Cognitive Science, 41(S4),913-927.
[47] Poulin-Charronnat, B., Perruchet, P., Tillmann, B., & Peereman, R. (2016). Familiar units prevail over statistical cues in word segmentation. Psychological Research, 81,990-1003.
doi: 10.1007/s00426-016-0793-yURLpmid: 27580733
[48] Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294),1926-1928.
URLpmid: 8943209
[49] Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69(1),181-203.
[50] Sanders, L. D., Newport, E. L., & Neville, H. J. (2002). Segmenting nonsense: An event-related potential index of perceived onsets in continuous speech. Nature Neuroscience, 5(7),700-703.
doi: 10.1038/nn873URLpmid: 12068301
[51] Schad, D. J., Vasishth, S., Hohenstein, S., & Kliegl, R. (2020). How to capitalize on a priori contrasts in linear (mixed) models: A tutorial. Journal of Memory and Language, 110. doi: 10.1016/j.jml.2019.104038.
URLpmid: 33100506
[52] Shoaib, A., Wang, T., Hay, J. F., & Lany, J. (2018). Do infants learn words from statistics? Evidence from English-learning infants hearing Italian. Cognitive Science, 42(8),3083-3099.
doi: 10.1111/cogs.12673URLpmid: 30136301
[53] Siegelman, N., Bogaerts, L., Elazar, A., Arciuli, J., & Frost, R. (2018). Linguistic entrenchment: Prior knowledge impacts statistical learning performance. Cognition, 177,198-213.
doi: 10.1016/j.cognition.2018.04.011URLpmid: 29705523
[54] Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring individual differences in statistical learning: Current pitfalls and possible solutions. Behavior Research Methods, 49(2),418-432.
doi: 10.3758/s13428-016-0719-zURLpmid: 26944577
[55] Smith, N. A., & Trainor, L. J. (2008). Infant-directed speech is modulated by infant feedback. Infancy, 13(4),410-420.
[56] Suomi, K., McQueen, J. M., & Cutler, A. (1997). Vowel harmony and speech segmentation in Finnish. Journal of Memory and Language, 36(3),422-444.
[57] Thiessen, E. D., Hill, E. A., & Saffran, J. R. (2005). Infant-directed speech facilitates word segmentation. Infancy, 7(1),53-71.
URLpmid: 33430544
[58] Toro, J. M., Pons, F., Bion, R. A. H., & Sebastián-Gallés, N. (2011). The contribution of language-specific knowledge in the selection of statistically-coherent word candidates. Journal of Memory and Language, 64(2),171-180.
[59] Wang, T. L., & Saffran, J. R. (2014). Statistical learning of a tonal language: the influence of bilingualism and previous linguistic experience. Frontiers in Psychology, 5,593. doi: 10.3389/fpsyg.2014.00953.
URLpmid: 25071617




[1]顾俊娟, 石金富. 汉字位置加工和词边界效应的认知机制[J]. 心理科学进展, 2021, 29(2): 191-201.
[2]白学军;张慢慢;臧传丽;李馨;陈璐;闫国利. 词边界信息在中文词汇学习与识别中的作用:眼动研究的证据[J]. 心理科学进展, 2014, 22(1): 1-8.
[3]丁国盛;李妍妍. 聋人早期手语经验对脑功能及结构的塑造作用[J]. 心理科学进展, 2012, 20(3): 328-337.
[4]李兴珊;刘萍萍;马国杰. 中文阅读中词切分的认知机理述评[J]. 心理科学进展, 2011, 19(4): 459-470.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5422
相关话题/语言 经验 汉语 心理 概率

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 抑郁症患者的语言使用模式
    黄观澜,周晓璐()上海师范大学教育学院,上海200234收稿日期:2020-06-06出版日期:2021-05-15发布日期:2021-03-30通讯作者:周晓璐E-mail:zhouxiaolu@shnu.edu.cnThelinguisticpatternsofdepressedpatients ...
    本站小编 Free考研考试 2022-01-01
  • 基于社交媒体数据的心理指标识别建模: 机器学习的方法
    苏悦1,2,刘明明1,3,赵楠1,刘晓倩1,朱廷劭1,2()1中国科学院心理研究所,北京1001012中国科学院大学心理学系,北京1000493联想研究院,北京100094收稿日期:2020-01-14出版日期:2021-04-15发布日期:2021-02-22基金资助:国家社科基金重点项目(17A ...
    本站小编 Free考研考试 2022-01-01
  • 基于游戏的心理测评
    徐俊怡,李中权()南京大学社会学院心理学系,南京210023收稿日期:2020-05-24出版日期:2021-03-15发布日期:2021-01-26通讯作者:李中权E-mail:zqli@nju.edu.cn基金资助:教育部人文社科规划基金项目(20YJA190004);江苏省教育厅高校哲学社会科 ...
    本站小编 Free考研考试 2022-01-01
  • 第二语言学习者形态复杂词的加工机制
    丛凤娇,陈宝国()北京师范大学心理学部,北京100875收稿日期:2020-05-25出版日期:2021-03-15发布日期:2021-01-26通讯作者:陈宝国E-mail:chenbg@bnu.edu.cn基金资助:国家自然科学基金(31970976);北京师范大学博一学科交叉基金项目资助(BN ...
    本站小编 Free考研考试 2022-01-01
  • 恐惧管理理论的争议及其对死亡心理研究的启示
    孟祥寒1,李强1,2(),周彦榜1,王进31南开大学社会心理学系,天津3003502南开大学滨海学院,天津3002703天津职业技术师范大学,天津300222收稿日期:2020-02-29出版日期:2021-03-15发布日期:2021-01-26通讯作者:李强E-mail:liqiangp@126 ...
    本站小编 Free考研考试 2022-01-01
  • 敬畏的心理模型及其认知神经机制
    赵小红1,2,童薇3,陈桃林1,2(),吴冬梅4,张蕾1,2,陈正举1,方晓义3,龚启勇1,2,唐小蓉21四川大学华西医院放射科华西磁共振研究中心,成都6100412四川大学公共管理学院社会学与心理学系,成都6100653北京师范大学心理学部,北京1008754成都市第四人民医院,成都610036收 ...
    本站小编 Free考研考试 2022-01-01
  • 老年人心理韧性与幸福感的关系:一项元分析
    叶静,张戌凡()南京师范大学金陵女子学院,南京210097收稿日期:2020-07-23出版日期:2021-02-15发布日期:2020-12-29通讯作者:张戌凡E-mail:xufanzhang@163.com基金资助:国家自然科学青年基金项目“工会实践对员工工作幸福感的影响:基于工具-情感的双 ...
    本站小编 Free考研考试 2022-01-01
  • 催产素调控心理韧性:基于对海马的作用机制
    薛冰,王雪娇,马宁,高军()认知与人格教育部重点实验室,重庆400715收稿日期:2020-04-27出版日期:2021-02-15发布日期:2020-12-29通讯作者:高军E-mail:gaojunscience@126.com基金资助:国家自然科学基金(32071059);重庆市自然科学基金( ...
    本站小编 Free考研考试 2022-01-01
  • 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度
    高青林,周媛()中国科学院心理研究所行为科学重点实验室,北京100101中国科学院大学心理学系,北京100049收稿日期:2020-04-18出版日期:2021-01-15发布日期:2020-11-23通讯作者:周媛E-mail:zhouyuan@psych.ac.cn基金资助:*中国科学院心理研究 ...
    本站小编 Free考研考试 2022-01-01
  • 《心理科学进展》2020年度审稿专家名录
    出版日期:2021-01-15发布日期:2021-01-08Online:2021-01-15Published:2021-01-08摘要/Abstract参考文献相关文章0Norelatedarticlesfound!PDF全文下载地址:http://journal.psych.ac.cn/xlk ...
    本站小编 Free考研考试 2022-01-01