东北师范大学心理学院, 长春 130000
收稿日期:
2020-06-19出版日期:
2021-05-15发布日期:
2021-03-30通讯作者:
王丽娟E-mail:wanglj699@nenu.edu.cn基金资助:
教育部人文社科规划项目(1802123);吉林省教育厅“十三五”社会科学重点项目(JJKH20201189SK)The relationship between the approximate number system and mathematical abilities: Evidence from developmental research
LIANG Xiao, KANG Jingmei, WANG Lijuan()School of Psychology, Northeast Normal University, Changchun 130000, China
Received:
2020-06-19Online:
2021-05-15Published:
2021-03-30Contact:
WANG Lijuan E-mail:wanglj699@nenu.edu.cn摘要/Abstract
摘要: 近似数量系统在个体数学能力的发展中起着重要的作用, 二者之间的关系受到年龄因素的影响。主要表现为, 随着年龄的增长, 相关程度逐渐减弱, 二者之间关系的作用机制可能由基数知识中介转变为多种中介变量的共同作用。未来可采用更严格的实验设计和多种研究方法考察各年龄段儿童近似数量系统与不同数学能力之间关系的发展趋势、因果方向、关键转折点和潜在机制, 以更好地理解近似数量系统在个体数学能力发展中所起的作用。
参考文献 100
[1] | Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non-symbolic numerical abilities predict mathematical achievements but contradict ATOM. Behavioral and Brain Functions, 9(1),26. URLpmid: 23815866 |
[2] | Alvarez, J., Abdul-Chani, M., Deutchman, P., DiBiasie, K., Iannucci, J., Lipstein, R.,... Sullivan, J. (2017). Estimation as analogy-making: Evidence that preschoolers' analogical reasoning ability predicts their numerical estimation. Cognitive Development, 41,73-84. |
[3] | Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? Journal of Experimental Child Psychology, 117,12-28. URLpmid: 24128690 |
[4] | Bethany, R. J., Emily, R. F., Kerry, G. H., & Dale, C. F. (2016). Early math trajectories: Low-income children's mathematics knowledge from ages 4 to 11. Child Development, 88(5),1727-1742. doi: 10.1111/cdev.12662URLpmid: 27921305 |
[5] | Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: evidence from the preschool years. Journal of Experimental Child Psychology, 114(3),375-388. doi: 10.1016/j.jecp.2012.09.015URL |
[6] | Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. Journal of Experimental Psychology, 103(6),1131-1136. URLpmid: 4457588 |
[7] | Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8(1),36-41. |
[8] | Butterworth, B., & Walsh, V. (2011). Neural basis of mathematical cognition. Current Biology, 21(16),R618- R621. |
[9] | Castronovo, J., & G?bel, S. M. (2012). Impact of high mathematics education on the number sense. Plos One, 7(4),e33832. |
[10] | Chu, F. W., Vanmarle, K., & Geary, D. C. (2015). Early numerical foundations of young children's mathematical development. Journal of Experimental Child Psychology, 132,205-212. |
[11] | Chu, F. W., Vanmarle, K., & Geary, D. C. (2016). Predicting children's reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology, 7,775. |
[12] | Clark, C. A. C., Pritchard, V. E., & Woodward, L. J. (2010). Preschool executive functioning abilities predict early mathematics achievement. Developmental Psychology, 46(5),1176-1191. doi: 10.1037/a0019672URLpmid: 20822231 |
[13] | Clayton, S., Gilmore, C., & Inglis, M. (2015). Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica, 161,177-184. |
[14] | Cochrane, A., Cui, L., Hubbard, E. M., & Green, C. S. (2019). “Approximate number system” training: A perceptual learning approach. Attention Perception & Psychophysics, 81(3),621-636. |
[15] | Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonomic Bulletin & Review, 8(4),698-707. |
[16] | Crollen, V., Castronovo, J., & Seron, X. (2011). Under- and over-estimation: a bi-directional mapping process between symbolic and non-symbolic representations of number? Experimental Psychology, 58(1),39-49. URLpmid: 20494869 |
[17] | Cui, J., Zhang, Y., Cheng, D., Li, D., & Zhou, X. (2017). Visual form perception can be a cognitive correlate of lower level math categories for teenagers. Frontiers in Psychology, 8,1336. |
[18] | Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3-6),487-506. |
[19] | DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6,68. |
[20] | Dietrich, J. F., Huber, S., & Nuerk, H. C. (2015). Methodological aspects to be considered when measuring the approximate number system (ANS) - A research review. Frontiers in Psychology, 6,295. URLpmid: 25852612 |
[21] | Elliott, L., Feigenson, L., Halberda, J., & Libertus, M. E. (2019). Bidirectional, longitudinal associations between math ability and approximate number system precision in childhood. Journal of Cognition and Development, 20(1),56-74. |
[22] | Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123,53-72. URLpmid: 24699178 |
[23] | Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7),307-314. URLpmid: 15242690 |
[24] | Ferrigno, S., Jara-Ettinger, J., Piantadosi, S. T., & Cantlon, J. F. (2017). Universal and uniquely human factors in spontaneous number perception. Nature Communications, 8(1),1-10. doi: 10.1038/s41467-016-0009-6URLpmid: 28232747 |
[25] | Fuhs, M. W., & Mcneil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1),136-148. URLpmid: 23278935 |
[26] | Gallistel, C. (2011). Prelinguistic thought. Language Learning and Development, 7(4),253-262. |
[27] | Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6),1539-1552. URLpmid: 21942667 |
[28] | Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool: The number sets test. Journal of Psychoeducational Assessment, 27(3),265-279. URLpmid: 20161145 |
[29] | Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, D. H. (2013). Adolescents' functional numeracy is predicted by their school entry number system knowledge. Plos One, 8(1),e54651. |
[30] | Geary, D. C., Hoard, M. K., Nugent, L., & Rouder, J. N. (2015). Individual differences in algebraic cognition: Relation to the approximate number and semantic memory systems. Journal of Experimental Child Psychology, 140,211-227. doi: 10.1016/j.jecp.2015.07.010URLpmid: 26255604 |
[31] | Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4),642-648. |
[32] | Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N.,... Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. Plos One, 8(6),e67374. doi: 10.1371/journal.pone.0067374URLpmid: 23785521 |
[33] | Gilmore, C., Cragg, L., Hogan, G., & Inglis, M. (2016). Congruency effects in dot comparison tasks: Convex hull is more important than dot area. Journal of Cognitive Psychology, 28(8),923-931. |
[34] | Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability(3rd ed). Austin, TX: Pro-Ed. |
[35] | Glutting, J., & Jordan, N. C. (2012). Number sense screener. Baltimore, MD: Brookes Publishing. |
[36] | Goffin, C., & Ansari, D. (2019). How are symbols and nonsymbolic numerical magnitudes related? Exploring bidirectional relationships in early numeracy. Mind, Brain, and Education, 13(3),143-156. |
[37] | Gouet, C., Silva, C. A., Guedes, B., & Pena, M. (2018). Cognitive and neural effects of a brief nonsymbolic approximate arithmetic training in healthy first grade children. Frontiers in Integrative Neuroence, 12(13),28. |
[38] | Guillaume, M., Nys, J., Mussolin, C., & Content, A. (2013). Differences in the acuity of the approximate number system in adults: The effect of mathematical ability. Acta Psychologica, 144(3),506-512. doi: 10.1016/j.actpsy.2013.09.001URLpmid: 24096088 |
[39] | Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213),665-668. URLpmid: 18776888 |
[40] | He, Y., Zhou, X., Shi, D., Song, H., Zhang, H., & Shi, J. (2016). New evidence on causal relationship between approximate number system (ANS) acuity and arithmetic ability in elementary-school students: A longitudinal cross-lagged analysis. Frontiers in Psychology, 7(26),1052. |
[41] | Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children's mathematics achievement. Journal of Experimental Child Psychology, 103(1),17-29. doi: 10.1016/j.jecp.2008.04.001URLpmid: 18513738 |
[42] | Holloway, I. D., Price, G. R., & Ansari, D. (2010). Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude: An fMRI study. NeuroImage, 49(1),1006-1017. URLpmid: 19666127 |
[43] | Hutchison, J. E., Ansari, D., Zheng, S., De Jesus, S., & Lyons, I. M. (2020). The relation between subitizable symbolic and non-symbolic number processing over the kindergarten school year. Developmental Science, 23(2),e12884. doi: 10.1111/desc.12884URLpmid: 31271687 |
[44] | Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1),92-107. URLpmid: 24462713 |
[45] | Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6),1222-1229. URLpmid: 21898191 |
[46] | Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system. Acta Psychologica, 145,147-155. doi: 10.1016/j.actpsy.2013.11.009URLpmid: 24361686 |
[47] | Keller, L., & Libertus, M. (2015). Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology, 6,685. URLpmid: 26052306 |
[48] | Khanum, S., Hanif, R., Spelke, E. S., Berteletti, I., & Hyde, D. C. (2016). Effects of non-symbolic approximate number practice on symbolic numerical abilities in pakistani children. Plos One, 11(10),e0164436. doi: 10.1371/journal.pone.0164436URLpmid: 27764117 |
[49] | Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25,95-103. |
[50] | LeFevre, J. -A., Fast, L., Skwarchuk, S. -L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6),1753-1767. doi: 10.1111/j.1467-8624.2010.01508.xURLpmid: 21077862 |
[51] | Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25,126- 133. URLpmid: 23814453 |
[52] | Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2020). Effects of visual training of approximate number sense on auditory number sense and school math ability. Frontiers in Psychology, 11,2085. URLpmid: 32973627 |
[53] | Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college- entrance examination. Acta Psychologica, 141(3),373-379. doi: 10.1016/j.actpsy.2012.09.009URLpmid: 23098904 |
[54] | Lindskog, M., & Winman, A. (2016). No evidence of learning in non-symbolic numerical tasks - A comment on Park and Brannon (2014). Cognition, 150,243-247. doi: 10.1016/j.cognition.2016.01.005URLpmid: 26972468 |
[55] | Lindskog, M., Winman, A., Juslin, P., & Poom, L. (2013). Measuring acuity of the approximate number system reliably and validly: The evaluation of an adaptive test procedure. Frontiers in Psychology, 4(8),510. |
[56] | Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2),256-261. doi: 10.1016/j.cognition.2011.07.009URL |
[57] | Lyons, I. M., Bugden, S., Zheng, S., De Jesus, S., & Ansari, D. (2018). Symbolic number skills predict growth in nonsymbolic number skills in kindergarteners. Developmental Psychology, 54(3),440-457. doi: 10.1037/dev0000445URLpmid: 29154653 |
[58] | Maertens, B., de Smedt, B., Sasanguie, D., Elen, J., & Reynvoet, B. (2016). Enhancing arithmetic in pre-schoolers with comparison or number line estimation training: Does it matter? Learning and Instruction, 46,1-11. doi: 10.1016/j.learninstruc.2016.08.004URL |
[59] | Malone, S. A., Pritchard, V. E., Heron-delaney, M., Burgoyne, K., Lervag, A., & Hulme, C. (2019). The relationship between numerosity discrimination and arithmetic skill reflects the approximate number system and cannot be explained by inhibitory control. Journal of Experimental Child Psychology, 184,220-231. doi: 10.1016/j.jecp.2019.02.009URLpmid: 30935590 |
[60] | Matejko, A. A., & Ansari, D. (2016). Trajectories of symbolic and nonsymbolic magnitude processing in the first year of formal schooling. Plos One, 11(3),e0149863. doi: 10.1371/journal.pone.0149863URLpmid: 26930195 |
[61] | Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers' precision of the approximate number system predicts later school mathematics performance. Plos One, 6 (9),e23749. doi: 10.1371/journal.pone.0023749URLpmid: 21935362 |
[62] | Mussolin, C., Nys, J., & Leybaert, J. (2014). Symbolic number abilities predict later approximate number system acuity in preschool children. Plos One, 9(3),e91839. doi: 10.1371/journal.pone.0091839URLpmid: 24637785 |
[63] | Mussolin, C., Nys, J., Leybaert, J., & Content, A. (2016). How approximate and exact number skills are related to each other across development: a review. Developmental Review, 39,1-15. |
[64] | Norris, J. E., Clayton, S., Gilmore, C. K., Inglis, M., & Castronovo, J. (2019). The measurement of approximate number system acuity across the lifespan is compromised by congruency effects. Quarterly Journal of Experimental Psychology, 72(5),1037-1046. |
[65] | Nys, J., Ventura, P., Fernandes, T., Querido, L., Leybaert, J., & Content, A. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education, 2(1),13-22. |
[66] | Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students' basic number processing and arithmetic skills. Learning and Instruction, 23,125- 135. |
[67] | Odic, D., Hock, H., & Halberda, J. (2014). Hysteresis affects approximate number discrimination in young children. Journal of Experimental Psychology: General, 143(1),255-265. |
[68] | Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152,278-293. |
[69] | Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10),2013-2019. URLpmid: 23921769 |
[70] | Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1),188-200. |
[71] | Peng, P., Yang, X., & Meng, X. (2017). The relation between approximate number system and early arithmetic: The mediation role of numerical knowledge. Journal of Experimental Child Psychology, 157,111-124. URLpmid: 28142096 |
[72] | Piazza, M., Pica, P., Izard, V., Spelke, E., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological Science, 24(6),1037-1043. |
[73] | Piazza, M., Pinel, P., Bihan, D. L., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2),293-305. URLpmid: 17224409 |
[74] | Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140(1),50-57. doi: 10.1016/j.actpsy.2012.02.008URLpmid: 22445770 |
[75] | Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. Quarterly Journal of Experimental Psychology, 67(2),271-280. |
[76] | Sasanguie, D., Defever, E., van den Bussche, E., & Reynvoet, B. (2011). The reliability of and the relation between non-symbolic numerical distance effects in comparison, same-different judgments and priming. Acta Psychologica, 136(1),73-80. URLpmid: 21075357 |
[77] | Sasanguie, D., Gobel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number-space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3),418-431. URLpmid: 23270796 |
[78] | Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & de Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3),e12372. |
[79] | Sella, F., Tressoldi, P., Lucangeli, D., & Zorzi, M. (2016). Training numerical skills with the adaptive videogame “The Number Race”: A randomized controlled trial on preschoolers. Trends in Neuroscience and Education, 5(1),20-29. |
[80] | Shusterman, A., Slusser, E., Halberda, J., & Odic, D. (2016). Acquisition of the cardinal principle coincides with improvement in approximate number system acuity in preschoolers. Plos One, 11(4),e0153072. URLpmid: 27078257 |
[81] | Sigmundsson, H., Anholt, S. K., & Talcott, J. B. (2010). Are poor mathematics skills associated with visual deficits in temporal processing. Neuroscience Letters, 469(2),248-250. URLpmid: 19995594 |
[82] | Smets, K., Sasanguie, D., Szucs, D., & Reynvoet, B. (2015). The effect of different methods to construct non-symbolic stimuli in numerosity estimation and comparison. Journal of Cognitive Psychology, 27(3),310-325. |
[83] | Sokolowski, H. M., Fias, W., Mousa, A., & Ansari, D. (2016). Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis. NeuroImage, 146,376-394. URLpmid: 27769786 |
[84] | Soltész, F., Szucs, D., & Szucs, L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6(1),13. |
[85] | Soto-Calvo, E., Simmons, F., Willis, C., & Adams, A. (2015). Identifying the cognitive predictors of early counting and calculation skills: Evidence from a longitudinal study. Journal of Experimental Child Psychology, 140,16-37. URLpmid: 26218332 |
[86] | Suárez-Pellicioni, M., & Booth, J. R. (2018). Fluency in symbolic arithmetic refines the approximate number system in parietal cortex. Human Brain Mapping, 39(10),3956-3971. |
[87] | Swanson, H. L. (2011). Working memory, attention, and mathematical problem solving: A longitudinal study of elementary school children. Journal of Educational Psychology, 103(4),821-837. |
[88] | Szkudlarek, E., & Brannon, E. M. (2017). Does the approximate number system serve as a foundation for symbolic mathematics. Language Learning and Development, 13(2),171-190. doi: 10.1080/15475441.2016.1263573URL |
[89] | Szkudlarek, E., & Brannon, E. M. (2018). Approximate arithmetic training improves informal math performance in low achieving preschoolers. Frontiers in Psychology, 9,606. doi: 10.3389/fpsyg.2018.00606URLpmid: 29867624 |
[90] | Vanbinst, K., Ghesquiere, P., & de Smedt, B , . (2012). Numerical magnitude representations and individual differences in children's arithmetic strategy use. Mind, Brain, and Education, 6(3),129-136. |
[91] | Vanbinst, K., Ghesquière, P., & de Smedt, B. (2015). Does numerical processing uniquely predict first graders' future development of single-digit arithmetic? Learning and Individual Differences, 37,153-160. |
[92] | van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers' quantitative development. Developmental Science, 17(4),492-505. URLpmid: 24498980 |
[93] | Wang, J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers' approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology, 147,82-99. URLpmid: 27061668 |
[94] | Wang, L., Sun, Y., & Zhou, X. (2016). Relation between approximate number system acuity and mathematical achievement: The influence of fluency. Frontiers in Psychology, 7(26),1966. |
[95] | Wei, W., Yuan, H., Chen, C., & Zhou, X. (2012). Cognitive correlates of performance in advanced mathematics. British Journal of Educational Psychology, 82(1),157- 181. |
[96] | Woodcock, R. W., Johnson, M. B., & Mather, N. (1990). Woodcock-Johnson psycho-educational battery — Revised. DLM Teaching Resources. |
[97] | Zhang, Y., Chen, C., Liu, H., Cui, J., & Zhou, X. (2016). Both non-symbolic and symbolic quantity processing are important for arithmetical computation but not for mathematical reasoning. Journal of Cognitive Psychology, 28(7),807-824. |
[98] | Zhang, Y., Liu, T., Chen, C., & Zhou, X. (2019). Visual form perception supports approximate number system acuity and arithmetic fluency. Learning & Individual Differences, 71,1-12. |
[99] | Zhou, X., & Cheng, D. (2015). When and why numerosity processing is associated with developmental dyscalculia. In The Routledge international handbook of dyscalculia and mathematical learning difficulties (pp.78-89). Routledge. |
[100] | Zhou, X., Wei, W., Zhang, Y., Cui, J., & Chen, C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology, 6,1364. doi: 10.3389/fpsyg.2015.01364URLpmid: 26441740 |
相关文章 15
[1] | 荆伟, 张婕, 付锦霞, 田琳, 赵微. 婴幼儿面孔注意偏向:先天倾向与发展轨迹——来自正常和孤独症婴幼儿的证据[J]. 心理科学进展, 2021, 29(7): 1216-1230. |
[2] | 王润洲, 毕鸿燕. 发展性阅读障碍的听觉时间加工缺陷[J]. 心理科学进展, 2021, 29(7): 1231-1238. |
[3] | 王琳, 王志丹, 王泓婧. 孤独症儿童动作发展障碍的神经机制[J]. 心理科学进展, 2021, 29(7): 1239-1250. |
[4] | 任筱宇, 赵婧, 毕鸿燕. 动作视频游戏对发展性阅读障碍者阅读技能的影响及其内在机制[J]. 心理科学进展, 2021, 29(6): 1000-1009. |
[5] | 柴晓运, 林丹华. 化危为机:青少年学校转折期的过渡[J]. 心理科学进展, 2021, 29(5): 864-874. |
[6] | 王学思, 李静雅, 王美芳. 父母婚姻冲突对儿童发展的影响及其机制[J]. 心理科学进展, 2021, 29(5): 875-884. |
[7] | 张亚坤, 陈宁, 陈龙安, 施建农. 让智慧插上创造的翅膀:创造动力系统的激活及其条件[J]. 心理科学进展, 2021, 29(4): 707-722. |
[8] | 周爱保, 胡砚冰, 周滢鑫, 李玉, 李文一, 张号博, 郭彦麟, 胡国庆. 听而不“闻”?人声失认症的神经机制[J]. 心理科学进展, 2021, 29(3): 414-424. |
[9] | 程士静, 何文广. 语义认知的习得、发展和老化及其神经机制[J]. 心理科学进展, 2020, 28(7): 1156-1163. |
[10] | 徐富明, 黄龙, 张慧. 随机控制实验:助推脱贫的现场干预研究[J]. 心理科学进展, 2020, 28(11): 1953-1960. |
[11] | 卢富荣, 宋煜静, 刘路培, 方选智, 张彩. 隔代教育对孙辈和祖辈的影响:双刃剑效应[J]. 心理科学进展, 2020, 28(10): 1733-1741. |
[12] | 王俊秀. 多重整合的社会心理服务体系:政策逻辑、建构策略与基本内核[J]. 心理科学进展, 2020, 28(1): 55-61. |
[13] | 卫垌圻, 曹慧, 毕鸿燕, 杨炀. 发展性阅读障碍书写加工缺陷及其神经机制[J]. 心理科学进展, 2020, 28(1): 75-84. |
[14] | 张坤坤, 张珂烨, 张火垠, 罗文波. 面孔可信度加工的时间进程和影响因素[J]. 心理科学进展, 2019, 27(8): 1394-1403. |
[15] | 张珊珊, 谢晋宇, 吴敏. “蜜糖裹砒霜”:善意性别偏见对女性生涯发展的影响[J]. 心理科学进展, 2019, 27(8): 1478-1488. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5426