删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多目标追踪的神经机制

本站小编 Free考研考试/2022-01-01

魏柳青1,2, 张学民2,3()
1 湖北大学教育学院, 武汉 430062
2 北京师范大学心理学部, 应用实验心理北京市重点实验室, 心理学国家级实验教学示范中心(北京师范大学), 北京 100875
3 北京师范大学认知神经科学与学习国家重点实验室, 北京 100875
收稿日期:2019-05-02出版日期:2019-12-15发布日期:2019-10-21
通讯作者:张学民E-mail:xmzhang@bnu.edu.cn

基金资助:* 应用实验心理北京市重点实验室开放课题、认知神经科学与学习国家重点实验室开放课题(CNLZD1804);国家自然科学基金重点项目(61632014);国家自然科学基金面上项目资助(31271083)

The neural mechanism of multiple object tracking

WEI Liuqing1,2, ZHANG Xuemin2,3()
1 Department of Psychology, Faculty of Education, Hubei University, Wuhan 430062, China
2 Beijing Key Laboratory of Applied Experimental Psychology; National Demonstration Center for Experimental Psychology Education (Beijing Normal University); Faculty of Psychology, Beijing Normal University, Beijing 100875, China
3 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
Received:2019-05-02Online:2019-12-15Published:2019-10-21
Contact:ZHANG Xuemin E-mail:xmzhang@bnu.edu.cn






摘要/Abstract


摘要: 多目标追踪任务是研究动态场景中视觉注意加工机制常用的范式。自1998年开始对多目标追踪神经机制的影像学研究以来, 研究者采用ERP和fMRI等技术对多目标注意追踪所涉及的神经电生理活动和脑功能区激活方面开展了大量研究。ERP研究发现, 追踪过程持续的ERP脑电成分如N2pc、CDA的波幅与注意追踪负荷有关, 并且出现在目标与非目标上的探测刺激诱发的脑电成分如N1、P1波幅的差异可反映注意资源的分配, 具体为目标在追踪过程中得到了激活, 而非目标受到了抑制。fMRI研究比较一致地发现了顶叶(包括前顶内沟、后顶内沟、顶上小叶)、背外侧额叶皮层等在注意追踪中的强烈激活。其中顶内沟主要与注意负荷有关, 顶内沟的活动水平直接决定了观察者注意追踪的行为表现。而顶上小叶可能更多的负责注意转移。背外侧额叶皮层可能负责追踪时的感觉运动预测过程。


表1多目标追踪涉及的相关脑区及其功能
脑区 功能 相关研究文献
顶内沟(IPS)、顶上小叶(SPL)、楔前叶(Precuneus)、额叶眼动区(FEF)、颞中区(MT) 注意追踪激活的相关脑区 Aln?s et al., 2014; Culham et al., 1998; Culham et al., 2001; Howe et al., 2009; Jahn et al., 2012; Jovicich et al., 2001;
顶内沟(IPS) 与注意负荷密切相关; 可能负责目标客体上索引的保持 Battelli et al., 2009; Blumberg et al., 2015; Jahn et al., 2012; Aln?s et al., 2015
顶上小叶(SPL) 可能负责注意转移 Aln?s et al., 2015
楔前叶(Precuneus) 可能负责空间方位的保持和更新 Jahn et al., 2012
背外侧额叶皮层(DLFC) 可能负责追踪时的感觉运动预测过程 Atmaca et al., 2013

表1多目标追踪涉及的相关脑区及其功能
脑区 功能 相关研究文献
顶内沟(IPS)、顶上小叶(SPL)、楔前叶(Precuneus)、额叶眼动区(FEF)、颞中区(MT) 注意追踪激活的相关脑区 Aln?s et al., 2014; Culham et al., 1998; Culham et al., 2001; Howe et al., 2009; Jahn et al., 2012; Jovicich et al., 2001;
顶内沟(IPS) 与注意负荷密切相关; 可能负责目标客体上索引的保持 Battelli et al., 2009; Blumberg et al., 2015; Jahn et al., 2012; Aln?s et al., 2015
顶上小叶(SPL) 可能负责注意转移 Aln?s et al., 2015
楔前叶(Precuneus) 可能负责空间方位的保持和更新 Jahn et al., 2012
背外侧额叶皮层(DLFC) 可能负责追踪时的感觉运动预测过程 Atmaca et al., 2013







[1] 马玉, 张学民, 张盈利, 魏柳青 . ( 2013). 自闭症儿童视觉动态信息的注意加工特点——来自多目标追踪任务的证据. 心理发展与教育, 29( 6), 571-577.
[2] 廖彦罡, 张学民, 葛春林 . ( 2006). 运动员在多目标视觉追踪任务中表现的研究. 西安体育学院学报, 23( 2), 124-127.
[3] 孙金燕 . ( 2013). 利用脑电及光电联合检测分别研究注意中的定向和执行控制(博士学位论文). 华中科技大学, 武汉.
[4] 魏柳青, 张学民 . ( 2014). 多身份追踪中基于范畴的分组效应. 心理科学进展, 22( 9), 1383-1392.
[5] 魏柳青, 张学民, 李永娜, 马玉 . ( 2014). 视听通道双任务对多目标追踪的影响: 干扰还是促进? 心理学报, 46( 6), 727-739.
[6] 张滨熠, 丁锦红 . ( 2010). 多目标视觉追踪的注意策略及其眼动模式. 心理学探新, 30( 4), 50-53.
[7] 张学民, 刘冰, 鲁学明 . ( 2009). 多目标追踪任务中不同运动方式非目标的抑制机制. 心理学报, 41( 10), 922-931.
[8] 张学民, 廖彦罡, 葛春林 . ( 2008). 运动员与普通大学生在多目标追踪任务中的表现. 北京体育大学学报, 31( 4), 504-507.
[9] 张学民, 鲁学明, 魏柳青 . ( 2011). 目标与非目标数量变化对多目标追踪的选择性抑制效应. 心理科学, 34( 6), 1295-1301.
[10] Allen, R., McGeorge, P., Pearson, D., & Milne, A. B . ( 2004). Attention and expertise in multiple target tracking. Applied Cognitive Psychology, 18( 3), 337-347.
[11] Alnæs, D., Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H. P., & Laeng, B . ( 2014). Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of Vision, 14( 4), 1-20.
[12] Alnæs, D., Sneve, M. H., Richard, G., Skåtun, K. C., Kaufmann, T., Nordvik, J. E., … Westlye, L. T . ( 2015). Functional connectivity indicates differential roles for the intraparietal sulcus and the superior parietal lobule in multiple object tracking. Neuroimage, 123, 129-137.
[13] Alvarez, G. A., & Franconeri, S. L . ( 2007). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7( 13), 1-10.
[14] Atmaca, S., Stadler, W., Keitel, A., Ott, D. V. M., Lepsien, J., & Prinz, W . ( 2013). Prediction processes during multiple object tracking (MOT): Involvement of dorsal and ventral premotor cortices. Brain Behavior, 3( 6), 683-700.
[15] Battelli, L., Alvarez, G. A., Carlson, T., & Pascual-Leone, A . ( 2009). The role of the parietal lobe in visual extinction studied with transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 21(10), 1946-1955.
[16] Blumberg, E. J., Peterson, M. S., & Parasuraman, R . ( 2015). Enhancing multiple object tracking performance with noninvasive brain stimulation: A causal role for the anterior intraparietal sulcus. Frontiers in Systems Neuroscience, 9( 3), 1-9.
[17] Cavanagh, P., & Alvarez, G. A . ( 2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9( 7), 349-354.
[18] Corbetta, M., Patel, G., & Shulman, G. L . ( 2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58( 3), 306-324.
[19] Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., & Tootell, R. B. H. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of Neurophysiology, 80( 5), 2657-2670.
[20] Culham, J. C., Cavanagh, P., & Kanwisher, N. G . ( 2001). Attention response functions: Characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron, 32( 4), 737-745.
[21] Doran, M. M., & Hoffman, J. E . ( 2010). The Role of Visual Attention in Multiple Object Tracking: Evidence from ERPs. Attention, Perception, & Psychophysics, 72( 1), 33-33.
[22] Drew, T., Horowitz, T. S., & Vogel, E. K . ( 2013). Swapping or dropping? Electrophysiological measures of difficulty during multiple object tracking. Cognition, 126( 2), 213-223.
[23] Drew, T., Horowitz, T. S., Wolfe, J. M., & Vogel, E. K . ( 2011). Delineating the neural signatures of tracking spatial position and working memory during attentive tracking. Journal of Neuroscience, 31( 2), 659-668.
[24] Drew, T., McCollough, A. W., Horowitz, T. S., & Vogel, E. K . ( 2009). Attentional enhancement during multiple-object tracking. Psychonomic Bulletin & Review, 16( 2), 411-417.
[25] Drew, T., & Vogel, E. K . ( 2008). Neural measures of individual differences in selecting and tracking multiple moving objects. Journal of Neuroscience, 28( 216), 4183-4183.
[26] Erlikhman, G., Keane, B. P., Mettler, E., Horowitz, T. S., & Kellman, P. J . ( 2013). Automatic feature-based grouping during multiple object tracking. Journal of Experimental Psychology: Human Perception & Performance, 39( 6), 1625-1637.
[27] Franconeri, S. L., Jonathan, S. V., & Scimeca, J. M . ( 2010). Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity. Psychological Science, 21( 7), 920-925.
[28] Franconeri, S. L., Pylyshyn, Z. W., & Scholl, B. J . ( 2006). Spatiotemporal cues for tracking multiple objects through occlusion. Visual Cognition, 14, 100-103.
[29] Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: the case of action video game players. Cognition, 101( 1), 217-245.
[30] Howe, P. D., Horowitz, T. S., Akos Morocz, I., Wolfe, J., & Livingstone, M. S . ( 2009). Using fMRI to distinguish components of the multiple object tracking task. Journal of Vision, 9( 4), 1-11.
[31] Howe, P. D. L., & Holcombe, A. O . ( 2012). The effect of visual distinctiveness on multiple object tracking performance. Frontiers in Perception Science, 3, 307.
[32] Huang, J., Wang, F., Ding, Y. L., Niu, H. J., Tian, F. H., Liu, H. L., & Song, Y . ( 2015) Predicting N2pc from anticipatory HbO activity during sustained visuospatial attention: A concurrent fNIRS-ERP study. NeuroImage, 113, 225-234.
[33] Jahn, G., Wendt, J., Lotze, M., Papenmeier, F., & Huff, M . ( 2012). Brain activation during spatial updating and attentive tracking of moving targets. Brain & Cognition, 78( 2), 105-113.
[34] Jovicich, J., Peters, R. J., Koch, C., Braun, J., Chang, L., & Ernst, T . ( 2001). Brain areas specific for attentional load in a motion-tracking task. Journal of Cognitive Neuroscience, 13, 1048-1058.
[35] Liu, G., Austen, E. L., Booth, K. S., Fisher, B. D., Argue, R., Rempel, M. I., & Enns, J. T . ( 2005). Multiple-object tracking is based on scene, not retinal, coordinates. Journal of Experimental Psychology: Human Perception & Performance, 31( 2), 235-247.
[36] Liu, T. W., Chen, W. F., Liu, C. H., & Fu, X. L . ( 2012). Benefits and costs of uniqueness in multiple object tracking: The role of object complexity. Vision Research, 66, 31-38.
[37] Luck, S. J. ( 2005). An introduction to the event-related potential technique,. Cambridge MA: MIT Press.
[38] Makovski, T., & Jiang, Y. V . ( 2009 a). The role of visual working memory in attentive tracking of unique objects. Journal of Experimental Psychology: Human Perception & Performance, 35( 6), 1687-1697.
[39] Makovski, T., & Jiang, Y.V . ( 2009 b). Feature binding in attentive tracking of distinct objects. Visual cognition, 17( 1-2), 180-194.
[40] Merkel, C., Hopf, J.-M., Heinze, H.-J., & Schoenfeld, M. A . ( 2015). Neural correlates of multiple object tracking strategies. NeuroImage, 118, 63-73.
[41] Merkel, C., Stoppel, C. M., Hillyard, S. A., Heinze, H. J., Hopf, J. M., & Schoenfeld, M. A . ( 2014). Spatio-temporal patterns of brain activity distinguish strategies of multiple- object tracking. Journal of Cognitive Neuroscience, 26( 1), 28-40.
[42] Ogawa, H., & Yagi, A. (2002). The effects of the information of untracked objects on multiple object tracking. The Japanese Journal of Psychonomic Science, 21( 1), 49-50.
[43] Oksama, L., & Hyönä, J. (2004). Is multiple object tracking carried out automatically by an early vision mechanism independent of higher-order cognition? An individual difference approach. Visual Cognition, 11( 5), 631-671.
[44] Pylyshyn, Z. W . ( 2000). Situating vision in the world. Trends in Cognitive Sciences, 4( 5), 197-207.
[45] Pylyshyn, Z. W . ( 2001). Visual indexes, Preconceptual objects, and situated vision. Cognition, 80( 1-2), 127-158.
[46] Pylyshyn, Z. W. ( 2003). Seeing and visualizing : It’s not what you think. Cambridge, MA: MIT Press, Bradford Books.
[47] Pylyshyn, Z. W . ( 2006). Some puzzling findings in multiple object tracking (MOT): II. Inhibition of moving nontargets. Visual Cognition, 14( 2), 175-198.
[48] Pylyshyn, Z. W., Haladjian, H. H., King, C. E., & Reilly, J. E . ( 2008). Selective nontarget inhibition in multiple object tracking. Visual Cognition, 16( 8), 1011-1021.
[49] Pylyshyn, Z. W., & Storm, R. W . ( 1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3( 3), 179-197.
[50] Ren, D. N., Chen, W. F., Liu, C. H., & Fu, X. L . ( 2009). Identity processing in multiple-face tracking. Journal of Vision, 9( 5), 1-15.
[51] Scholl, B. J., Pylyshyn, Z. W., & Feldman, J . ( 2001). What is a visual object? Evidence from target merging in multiple object tracking. Cognition, 80( 1-2), 159-177.
[52] St.Clair, R., Huff, M., & Seiffert, A. E . ( 2010). Conflicting motion information impairs multiple object tracking. Journal of Vision, 10( 4), 1-13.
[53] Sternshein, H., Agam, Y., & Sekuler, R . ( 2011). EEG correlates of attentional load during multiple object tracking. PLoS ONE, 6( 7), e22660.
[54] Suganuma, M., & Yokosawa, K. (2006). Grouping and trajectory storage in multiple object tracking: Impairments due to common item motions. Perception, 35( 4), 483-495.
[55] Thomas, L., & Seiffert, A. (2010). Self-motion impairs multiple-object tracking. Cognition, 117( 1), 80-86.
[56] Tombu, M., & Seiffert, A. E . ( 2011). Tracking planets and moons: Mechanisms of object tracking revealed with a new paradigm. Attention, Perception, & Psychophysics, 73( 3), 738-750.
[57] Tombu, M., & Seiffert, A. E . ( 2008). Attentional costs in multiple-object tracking. Cognition, 108( 1), 1-25.
[58] Trick, L. M., Hollinsworth, H., & Brodeur, D. A . ( 2009). Multiple-object tracking across the lifespan: Do different factors contribute to diminished performance in different age groups? In Don Dedrick and Lana Trick (Eds). Computation, Cognition, and Pylyshyn. MIT press.
[59] van, Marle K., & Scholl, B. J . ( 2003). Attentive tracking of objects vs. substances. Psychological Science, 3( 9), 496-504.
[60] Wang, C. D., Hu, L. M., Hu, S. Y., Xu, Y. W., & Zhang, X. M . ( 2018). Functional specialization for feature-based and symmetry-based groupings in multiple object tracking. Cortex, 108, 265-275.
[61] Wang, C. D., Zhang, X. M., Li, Y. N., & Lyu, C . ( 2016). Additivity of feature-based and symmetry-based grouping effects in Multiple Object Tracking. Frontiers in Psychology, 7, 657.
[62] Wei, L. Q., Zhang, X. M., Lyu, C., & Li, Z . ( 2016). The categorical distinction between targets and distractors facilitates tracking in Multiple Identity Tracking task. Frontiers in Psychology, 7, 589.
[63] Wei, L. Q., Zhang, X. M., Li, Z., & Liu, J. Y . ( 2018). The semantic category-based grouping in the Multiple Identity Tracking task. Attention, Perception, & Psychophysics, 80( 1), 118-133.
[64] Wei, L., Zhang, X., Lyu, C., Hu, S., & Li, Z . ( 2017). Brain activation of semantic category-based grouping in multiple identity tracking task. PLoS ONE, 12( 5), e0177709.
[65] Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24( 3), 295-340.
[66] Zhang, X. M., Yan, M., & Liao, Y. G . ( 2009). Differential performance of Chinese Volleyball athletes and nonathletes on a multiple-object tracking task. Perceptual and Motor Skills, 109( 3), 747-756.
[67] Zhou, K., Luo, H., Zhou, T. G., Zhuo, Y., & Chen, L . ( 2010). Topological change disturbs object continuity in attentive tracking. Proceedings of the National Academy of Science, 107( 50), 21920-21924.




[1]秦浩方, 黄蓉, 贾世伟. 反馈相关负波:一种抑郁症的生物标记物[J]. 心理科学进展, 2021, 29(3): 404-413.
[2]高青林, 周媛. 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度[J]. 心理科学进展, 2021, 29(1): 178-189.
[3]彭嘉熙, 赵鹿鸣, 方鹏, 曹云飞, 苗丹民, 肖玮. 睡眠剥夺对风险决策的影响机制探讨[J]. 心理科学进展, 2020, 28(11): 1789-1799.
[4]李泰安, 张禹, 李杰. 多目标追踪在各类人群评价与训练中的应用[J]. 心理科学进展, 2019, 27(9): 1585-1595.
[5]张坤坤, 张珂烨, 张火垠, 罗文波. 面孔可信度加工的时间进程和影响因素[J]. 心理科学进展, 2019, 27(8): 1394-1403.
[6]高见, 王鹏翀, 李占江. 认知行为治疗的生物学机制[J]. 心理科学进展, 2019, 27(3): 522-532.
[7]屈青青, 刘维琳, 李兴珊. 汉语言语产生的语音加工单元——基于音位的研究[J]. 心理科学进展, 2018, 26(9): 1535-1544.
[8]段凯凯, 董昊铭, 苗丽雯, 苏学权, 相洁, 左西年. 人脑自适应多尺度功能连接的性别差异[J]. 心理科学进展, 2018, 26(9): 1567-1575.
[9]傅世敏, 陈晓雯, 刘雨琪. 研究争论:空间注意是否调制C1成分?[J]. 心理科学进展, 2018, 26(11): 1901-1914.
[10]李 琪, 许晶, 郑亚. 刺激前负波:奖赏期待的电生理指标[J]. 心理科学进展, 2017, 25(7): 1114-1121.
[11]蒋钦;李红. 心理理论的ERP研究:基于多重成分框架的视角[J]. 心理科学进展, 2017, 25(5): 778-787.
[12]李雅; 李晟. 轮廓整合的时空动态加工机制[J]. 心理科学进展, 2016, 24(Suppl.): 60-.
[13]冉光明;陈旭;张兴;马原啸. 社会性预期优势效应的神经机制[J]. 心理科学进展, 2016, 24(5): 684-691.
[14]张禹;马晓;王新宇. 多目标追踪中“线索”研究的贡献[J]. 心理科学进展, 2016, 24(11): 1737-1746.
[15]杨洁敏;张蜀;袁加锦;刘光远. 心理预期与认知方式对负面情绪的交互调节[J]. 心理科学进展, 2015, 23(8): 1312-1323.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4883
相关话题/心理 科学 神经 视觉 运动