删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

额叶区域的经颅直流电刺激对抑制控制的影响

本站小编 Free考研考试/2022-01-01

周晶, 宣宾()
安徽师范大学教育科学学院, 芜湖 241000
收稿日期:2018-01-17出版日期:2018-11-15发布日期:2018-09-26
通讯作者:宣宾E-mail:xuanbin@mail.ahnu.edu.cn

基金资助:* 国家社会科学基金项目(18BYY090)

Effects of transcranial direct current stimulation (tDCS) on the frontal lobe region on inhibitory control

ZHOU Jing, XUAN Bin()
College of Educational Science, Anhui Normal University, Wuhu 241000, China
Received:2018-01-17Online:2018-11-15Published:2018-09-26
Contact:Bin XUAN E-mail:xuanbin@mail.ahnu.edu.cn






摘要/Abstract


摘要: 抑制控制是执行功能的重要组成部分之一, 研究表明抑制控制与额叶区域的活动有关。经颅直流电刺激(Transcranial Direct Current Stimulation, tDCS)是一种非侵入性的脑刺激技术, 可以调节脑区的激活程度。研究表明tDCS刺激额叶的部分区域可以有效干预参与者的抑制控制水平, 而这一干预作用会受到刺激位置、刺激类型以及实验任务等条件变化的影响。目前tDCS已应用于不同人群的抑制控制研究, 并能与其他研究技术较好的结合。


[1] 郭恒, 何莉, 周仁来 . ( 2016). 经颅直流电刺激提高记忆功能. 心理科学进展, 24( 3), 356-366
[2] 彭苏浩, 汤倩, 宣宾 . ( 2014). 基因-大脑-行为框架下的抑制控制与老化. 心理科学进展, 22( 8), 1236-1245
[3] 吴慧中, 王明怡 . ( 2015). 抑制控制内部结构间的关联——基于认知神经学的视角. 中国临床心理学杂志, 3( 6), 991-995
[4] Agam, Y., Joseph, R. M., Barton, J. J. S., & Manoach, D. S. ( 2010). Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. NeuroImage, 52( 1), 336-347
[5] Amatachaya, A., Auvichayapat, N., Patjanasoontorn, N., Suphakunpinyo, C., Ngernyam, N., Aree-uea, B., ... Auvichayapat, P. ( 2014). Effect of anodal transcranial direct current stimulation on autism: A randomized double-blind crossover trial. Behavioural Neurology, 2014( 2), 173073
[6] Amatachaya, A., Jensen, M. P., Patjanasoontorn, N., Auvichayapat, N., Suphakunpinyo, C., Janjarasjitt, S., ... Auvichayapat, P. ( 2015). The short-term effects of transcranial direct current stimulation on electroencephalography in children with autism: A randomized crossover controlled trial. Behavioural Neurology, 2015, 928631
[7] Antal, A., Bikson, M., Datta, A., Lafon, B., Dechent, P., Parra, L. C., & Paulus, W. ( 2014). Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. NeuroImage, 85 Pt 3, 1040-1047
[8] Aron, A.R. ( 2007). The neural basis of inhibition in cognitive control. The Neuroscientist, 13( 3), 214-228
[9] Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. ( 2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. Journal of Neuroscience, 27( 14), 3743-3752
[10] Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., & Stuphorn, V. ( 2007). Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. Journal of Neuroscience, 27( 44), 11860-11864
[11] Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. ( 2003). Erratum: Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115-116
[12] Aron, A.R., & Poldrack, R.A . ( 2006). Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. Journal of Neuroscience, 26( 9), 2424-2433
[13] Aron, A. R., Robbins, T. W., & Poldrack, R. A. ( 2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8( 4), 170-177
[14] Asahi, S., Okamoto, Y., Okada, G., Yamawaki, S., & Yokota, N. ( 2004). Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study. European Archives of Psychiatry and Clinical Neuroscience, 254( 4), 245-251
[15] Bandeira, I. D., Guimaraes, R. S. Q., Jagersbacher, J. G., Barretto, T. L., de Jesus-Silva, J. R., Santos, S. N., … Lucena, R. ( 2016). Transcranial direct current stimulation in children and adolescents with attention-deficit/ hyperactivity disorder (ADHD): A pilot study. Journal of Child Neurology, 31( 7), 918-924
[16] Bari, A., & Robbins, T.W. ( 2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79
[17] Barkley, R.A. ( 1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121( 1), 65-94
[18] Bechara, A.( 2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8( 11), 1458-1463
[19] Beeli, G., Casutt, G., Baumgartner, T., & J?ncke, L. ( 2008). Modulating presence and impulsiveness by external stimulation of the brain. Behavioral and Brain Functions, 4( 33), 1-7
[20] Breitling, C., Zaehle, T., Dannhauer, M., Bonath, B., Tegelbeckers, J., Flechtner, H. H., & Krauel, K. ( 2016). Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS). Frontiers in Cellular Neuroscience, 10, 72
[21] Brunoni, A. R., Ferrucci, R., Fregni, F., Boggio, P. S., & Priori, A.( 2012). Transcranial direct current stimulation for the treatment of major depressive disorder: A summary of preclinical, clinical and translational findings. Progress in Neuro-psychopharmacology and Biological Psychiatry, 39( 1), 9-16
[22] Brunoni, A. R., Moffa, A. H., Fregni, F., Palm, U., Padberg, F., Blumberger, D. M., ... Loo, C. K. ( 2016). Transcranial direct current stimulation for acute major depressive episodes: Meta-analysis of individual patient data. British Journal of Psychiatry the Journal of Mental Science, 208( 6), 522-531
[23] Brunyé, T. T., Cantelon, J., Holmes, A., Taylor, H. A., & Mahoney, C. R. ( 2014). Mitigating cutaneous sensation differences during tDCS: Comparing sham versus low intensity control conditions. Brain Stimulation, 7( 6), 832-835
[24] Bush, G., & Shin, L.M. ( 2006). The Multi-Source Interference Task: An fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network. Nature Protocols, 1( 1), 308-313
[25] Cai, Y., Li, S., Liu, J., Li, D., Feng, Z., Wang, Q., ... Xue, G. ( 2016). The role of the frontal and parietal cortex in proactive and reactive inhibitory control: A transcranial direct current stimulation study. Journal of Cognitive Neuroscience, 28( 1), 177-186
[26] Campanella, S., Schroder, E., Monnart, A., Vanderhasselt, M. A., Duprat, R., Rabijns, M., ... Rabijns, C. ( 2017). Transcranial direct current stimulation over the right frontal inferior cortex decreases neural activity needed to achieve inhibition: A double-blind ERP study in a male population. Clinical EEG and Neuroscience, 48( 3), 176-188
[27] Castro-Meneses, L. J., Johnson, B. W., & Sowman, P. F. ( 2016). Vocal response inhibition is enhanced by anodal tDCS over the right prefrontal cortex. Experimental Brain Research, 234( 1), 185-195
[28] Chambers, C. D., Garavan, H., & Bellgrove, M. A. ( 2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience & Biobehavioral Reviews, 33( 5), 631-646
[29] Chikazoe, J., Jimura, K., Hirose, S., Yamashita, K., Miyashita, Y., & Konishi, S. ( 2009). Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. The Journal of Neuroscience, 29( 50), 15870-15877
[30] Christ, S. E., Holt, D. D., White, D. A., & Green, L. ( 2007). Inhibitory control in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 37( 6), 1155-1165
[31] Cosmo, C., Baptista, A. F., de Araújo, A. N., do Rosário, R. S., Miranda, J. G. V., Montoya, P., ... de Sena, E. P.( 2015). A randomized, double-blind, sham-controlled trial of transcranial direct current stimulation in attention- deficit/hyperactivity disorder. PloS One, 10( 8), e0135371
[32] Costanzo, F., Menghini, D., Casula, L., Amendola, A., Mazzone, L., Valeri, G., ... Vicari, S. ( 2015). Transcranial direct current stimulation treatment in an adolescent with autism and drug-resistant catatonia. Brain Stimulation, 8( 6), 1233-1235
[33] Cubillo, A., Smith, A. B., Barrett, N., Giampietro, V., Brammer, M. J., Simmons, A., & Rubia, K. ( 2014). Shared and drug-specific effects of atomoxetine and methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys. Cerebral Cortex, 24( 1), 174-185
[34] Cunillera, T., Brignani, D., Cucurell, D., Fuentemilla, L., & Miniussi, C. ( 2016). The right inferior frontal cortex in response inhibition: A tDCS-ERP co-registration study. NeuroImage, 140, 66-75
[35] Cunillera, T., Fuentemilla, L., Brignani, D., Cucurell, D., & Miniussi, C. ( 2014). A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex. PloS One, 9( 11), e113537
[36] Dambacher, F., Schuhmann, T., Lobbestael, J., Arntz, A., Brugman, S., & Sack, A. T. ( 2015). No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression. PloS One, 10( 7), e0132170
[37] Dimoska, A., Johnstone, S. J., Barry, R. J., & Clarke, A. R. ( 2003). Inhibitory motor control in children with attention- deficit/hyperactivity disorder: Event-related potentials in the stop-signal paradigm. Biological Psychiatry, 54( 12), 1345-1354
[38] Ditye, T., Jacobson, L., Walsh, V., & Lavidor, M. ( 2012). Modulating behavioral inhibition by tDCS combined with cognitive training. Experimental brain research, 219( 3), 363-368
[39] Donkers, F. C.L., & van Boxtel, G. J. M. ( 2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56( 2), 165-176
[40] Eapen, V., Baker, R., Walter, A., Raghupathy, V., Wehrman, J. J., & Sowman, P. F. ( 2017). The role of transcranial direct current Stimulation (tDCS) in Tourette syndrome: A review and preliminary findings. Brain Sciences, 7( 12), 161
[41] Falkenstein, M., Hoormann, J., & Hohnsbein, J. ( 2002). Inhibition-related ERP components: Variation with modality, age, and time-on-task. Journal of Psychophysiology, 16( 3), 167-175
[42] Floden, D., & Stuss, D.T. ( 2006). Inhibitory control is slowed in patients with right superior medial frontal damage. Journal of Cognitive Neuroscience, 18( 11), 1843-1849
[43] Friese, M., Binder, J., Luechinger, R., Boesiger, P., & Rasch, B. ( 2013). Suppressing emotions impairs subsequent stroop performance and reduces prefrontal brain activation. PloS One, 8( 4), e60385
[44] Ganos, C., Kuhn, S., Kahl, U., Schunke, O., Feldheim, J., Gerloff, C., ... Münchau, A. ( 2014). Action inhibition in Tourette syndrome. Movement Disorders, 29( 12), 1532-1538
[45] Geusens, B., & Swinnen, N.( 2014. The effect of tDCS on inhibitory control in healthy older adults (Unpublished Master theses). Universiteit Hasselt Retrieved June 12, 2008, from
[46] Greenhouse, I., & Wessel, J.R. ( 2013). EEG signatures associated with stopping are sensitive to preparation. Psychophysiology, 50( 9), 900-908
[47] Hameed, M. Q., Dhamne, S. C., Gersner, R., Kaye, H. L., Oberman, L. M., Pascual-Leone, A., & Rotenberg, A. ( 2017). Transcranial magnetic and direct current stimulation in children. Current Neurology and Neuroscience Reports, 17( 2), 11-25
[48] Herrmann, M. J., Horst, A. K., L?ble, S., Moll, M. T., Katzorke, A., & Polak, T. ( 2017). Relevance of dorsolateral and frontotemporal cortex on the phonemic verbal fluency - A fNIRS-study. Neuroscience, 367, 169-177
[49] Hogeveen, J., Grafman, J., Aboseria, M., David, A., Bikson, M., & Hauner, K. K. ( 2016). Effects of high-definition and conventional tDCS on response inhibition. Brain Stimulation, 9( 5), 720-729
[50] Hsu, T. Y., Tseng, L. Y., Yu, J. X., Kuo, W. J., Hung, D. L., Tzeng, O. J., ... Juan, C. H. ( 2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. NeuroImage, 56( 4), 2249-2257
[51] Huster, R. J., Enriquez-Geppert, S., Lavallee, C. F., Falkenstein, M., & Herrmann, C. S. ( 2013). Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. International Journal of Psychophysiology, 87( 3), 217-233
[52] Jacobson, L., Ezra, A., Berger, U., & Lavidor, M. ( 2012). Modulating oscillatory brain activity correlates of behavioral inhibition using transcranial direct current stimulation. Clinical Neurophysiology, 123( 5), 979-984
[53] Jacobson, L., Javitt, D. C., & Lavidor, M. ( 2011). Activation of inhibition: Diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. Journal of Cognitive Neuroscience, 23( 11), 3380-3387
[54] Jones, K. T., Gozenman, F., & Berryhill, M. E. ( 2015). The strategy and motivational influences on the beneficial effect of neurostimulation: A tDCS and fNIRS study. NeuroImage, 105, 238-247
[55] Juan, C.H., & Muggleton, N.G . ( 2012). Brain stimulation and inhibitory control. Brain Stimulation, 5( 2), 63-69
[56] Kalu, U. G., Sexton, C. E., Loo, C. K., & Ebmeier, K. P. ( 2012). Transcranial direct current stimulation in the treatment of major depression: A meta-analysis. Psychological Medicine, 42( 9), 1791-1800
[57] Karuza, E. A., Balewski, Z. Z., Hamilton, R. H., Medaglia, J. D., Tardiff, N., & Thompson-Schill, S. L. ( 2016). Mapping the parameter space of tDCS and cognitive control via manipulation of current polarity and intensity. Frontiers in Human Neuroscience, 10, 665
[58] Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V., & Fehr, E. ( 2006). Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science, 314( 5800), 829-832
[59] Kwon, Y.H., & Kwon, J.W . ( 2013a). Is transcranial direct current stimulation a potential method for improving response inhibition? Neural Regenration Research, 8( 11), 1048-1054
[60] Kwon, Y.H., & Kwon, J.W . ( 2013b). Response inhibition induced in the stop-signal task by transcranial direct current stimulation of the pre-supplementary motor area and primary sensoriomotor cortex. Journal of Physical Therapy Science 25( 9), 1083-1086
[61] van de Laar, M. C.,van den Wildenberg, W. P. M.,van Boxtel, G. J. M.,Huizenga, H. M., & van der Molen, M. W。( 2012). Lifespan changes in motor activation and inhibition during choice reactions: A Laplacian ERP study. Biological Psychology, 89( 2), 323-334
[62] Langenecker, S. A., Bieliauskas, L. A., Rapport, L. J., Zubieta, J. K., Wilde, E. A., & Berent, S. ( 2005). Face emotion perception and executive functioning deficits in depression. Journal of Clinical and Experimental Neuropsychology, 27( 3), 320-333
[63] Langenecker, S. A., Kennedy, S. E., Guidotti, L. M., Briceno, E. M., Own, L. S., Hooven, T., ... Zubieta, J. K. ( 2007). Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biological Psychiatry, 62( 11), 1272-1280
[64] Lansbergen, M. M., Schutter, D. J. L. G., & Kenemans, J. L. ( 2007). Subjective impulsivity and baseline EEG in relation to stopping performance. Brain Research, 1148( 1), 161-169
[65] Lapenta, O. M., Sierve, K. D., de Macedo, E. C., Fregni, F., & Boggio, P. S. ( 2014). Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite, 83, 42-48
[66] Leite, J., Gon?alves, O. F., Pereira, P., Khadka, N., Bikson, M., Fregni, F., & Carvalho, S. ( 2018). The differential effects of unihemispheric and bihemispheric tDCS over the inferior frontal gyrus on proactive control. Neuroscience Research, 130, 39-46
[67] Li, C. S. R., Huang, C., Constable, R. T., & Sinha, R. ( 2006). Imaging response inhibition in a stop-signal task: Neural correlates independent of signal monitoring and post-response processing. Journal of Neuroscience, 26( 1), 186-192
[68] Li, C. S. R., Huang, C., Yan, P., Paliwal, P., Constable, R. T., & Sinha, R. ( 2008). Neural correlates of post-error slowing during a stop signal task: A functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 20( 6), 1021-1029
[69] Liang, W. K., Lo, M. T., Yang, A. C., Peng, C. K., Cheng, S. K., Tseng, P., & Juan, C.H. ( 2014). Revealing the brain's adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy. NeuroImage, 90, 218-234
[70] Loftus, A. M., Yalcin, O., Baughman, F. D., Vanman, E. J., & Hagger, M. S. ( 2015). The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain and Behavior, 5( 5), e00332
[71] Logan, G.D., & Burkell, J.( 1986). Dependence and independence in responding to double stimulation: A comparison of stop, change, and dual-task paradigms. Journal of Experimental Psychology: Human Perception and Performance, 12( 4), 549-563
[72] Logan, G. D., Schachar, R. J., & Tannock, R. ( 1997). Impulsivity and inhibitory control. Psychological Science, 8( 1), 60-64
[73] MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A., & Carter, C. S. ( 2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288( 5472), 1835-1838
[74] Mannuzza, S., Klein, R. G., & Moulton, J. L. ( 2003). Persistence of Attention-Deficit/Hyperactivity Disorder into adulthood: What have we learned from the prospective follow-up studies? Journal of Attention Disorders, 7( 2), 93-100
[75] Mayberg, H.S. ( 2007). Defining the neural circuitry of depression: Toward a new nosology with therapeutic implications. Biological Psychiatry, 61( 6), 729-730
[76] Mcauley, T., Yap, M., Christ, S. E., & White, D. A. ( 2006). Revisiting inhibitory control across the life span: insights from the ex-Gaussian distribution. Developmental Neuropsychology, 29( 3), 447-458
[77] McKendrick, R., Parasuraman, R., & Ayaz, H. ( 2015). Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): Expanding vistas for neurocognitive augmentation. Frontiers in Systems Neuroscience, 9, 27
[78] Meinzer, M., Lindenberg, R., Darkow, R., Ulm, L., Copland, D., & Fl?el, A. ( 2014). Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging. Journal of Visualized Experiments,( 86), e51730
[79] Merzagora, A. C., Foffani, G., Panyavin, I., Mordillo-Mateos, L., Aguilar, J., Onaral, B., & Oliviero, O. ( 2010). Prefrontal hemodynamic changes produced by anodal direct current stimulation. NeuroImage, 49( 3), 2304-2310
[80] Miniussi, C., Brignani, D., & Pellicciari, M. C. ( 2012). Combining transcranial electrical stimulation with electroencephalography: A multimodal approach. Clinical EEG and Neuroscience, 43( 3), 184-191
[81] Morand-Beaulieu, S., Grot, S., Lavoie, J., Leclerc, J. B., Luck, D., & Lavoie, M. E. ( 2017). The puzzling question of inhibitory control in Tourette syndrome: A meta-analysis. Neuroscience & Biobehavioral Reviews, 80, 240-262
[82] Mullane, J. C., Corkum, P. V., Klein, R. M., & Mclaughlin, E. ( 2009). Interference control in children with and without ADHD: A systematic review of Flanker and Simon task performance. Child Neuropsychology, 15( 4), 321-342
[83] Muszkat, D., Polanczyk, G. V., Dias, T. G., & Brunoni, A. R. ( 2016). Transcranial direct current stimulation in child and adolescent psychiatry. Journal of Child and Adolescent Psychopharmacology, 26( 7), 590-597
[84] Nachev, P., Wydell, H., O’Neill, K., Husain, M., & Kennard, C. ( 2007). The role of the pre-supplementary motor area in the control of action. NeuroImage, 36( Suppl. 2), T155-T163
[85] Nejati, V., Salehinejad, M. A., Nitsche, M. A., Najian, A., & Javadi, A. H. ( 2017). Transcranial direct current stimulation improves executive dysfunctions in ADHD: Implications for inhibitory control, interference control, working memory, and cognitive flexibility. Journal of Attention Disorders ( #4), 1087054717730611
[86] Nieratschker, V., Kiefer, C., Giel, K., Krüger, R., & Plewnia, C. ( 2015). The COMT Val/Met polymorphism modulates effects of tDCS on response inhibition. Brain Stimulation, 8( 2), 283-288
[87] Nitsche, M.A., & Paulus, W.( 2011). Transcranial direct current stimulation--update 2011. Restorative Neurology and Neuroscience, 29( 6), 463-492
[88] Nobusako, S., Nishi, Y., Nishi, Y., Shuto, T., Asano, D., Osumi, M., & Morioka, S. ( 2017). Transcranial direct current stimulation of the temporoparietal junction and inferior frontal cortex improves imitation-inhibition and perspective-taking with no effect on the autism-spectrum quotient score. Frontiers in Behavioral Neuroscience, 11, 84
[89] Nozari, N., Woodard, K., & Thompson-Schill, S. L. ( 2014). Consequences of cathodal stimulation for behavior: when does it help and when does it hurt performance? PloS One, 9( 1), e84338
[90] Obeso, I., Wilkinson, L., Casabona, E., Bringas, M. L., álvarez, M., álvarez, L., ... Marjan, J. ( 2011). Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Experimental Brain Research, 212( 3), 371-384
[91] Oldrati, V., Patricelli, J., Colombo, B., & Antonietti, A. ( 2016). The role of dorsolateral prefrontal cortex in inhibition mechanism: A study on cognitive reflection test and similar tasks through neuromodulation. Neuropsychologia, 91, 499-508
[92] Padmanabhan, A., Garver, K., O'Hearn, K., Nawarawong, N., Liu, R., Minshew, N., ... Luna, B. ( 2015). Developmental changes in brain function underlying inhibitory control in autism spectrum disorders. Autism Research, 8( 2), 123-135
[93] Palm, U., Segmiller, F. M., Epple, A. N., Freisleder, F. J., Koutsouleris, N., Schulte-K?rne, G., & Padberg, F. ( 2016). Transcranial direct current stimulation in children and adolescents: A comprehensive review. Journal of Neural Transmission, 123( 10), 1219-1234
[94] Paulus, W.( 2004). Outlasting excitability shifts induced by direct current stimulation of the human brain. Supplements to Clinical Neurophysiology, 57( 1), 708-714
[95] Pe?a-Gómez, C., Sala-Lonch, R., Junqué, C., Clemente, I. C., Vidal, D., Bargalló, N., ... Bartrés-Faz, D. ( 2012). Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimulation, 5( 3), 252-263
[96] Peng, C. K., Costa, M., & Goldberger, A. L. ( 2009). Adaptive data analysis of complex fluctuations in physiologic time series. Advances in Adaptive Data Analysis, 1( 1), 61-70
[97] Priori, A., Hallett, M., & Rothwell, J. C. ( 2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation, 2( 4), 241-245
[98] Quinn, C. R., Harris, A., & Kemp, A. H. ( 2012). The impact of depression heterogeneity on inhibitory control. Australian and New Zealand Journal of Psychiatry, 46( 4), 374-383
[99] Roberts, A.C., & Wallis, J.D . ( 2000). Inhibitory control and affective processing in the prefrontal cortex: Neuropsychological studies in the common marmoset. Cerebral Cortex, 10( 3), 252-262
[100] Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. ( 2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20( 1), 351-358
[101] Schmitt, L. M., White, S. P., Cook, E. H., Sweeney, J. A., & Mosconi, M. W. ( 2018). Cognitive mechanisms of inhibitory control deficits in autism spectrum disorder. The Journal of Child Psychology and Psychiatry, 59( 5), 586-595
[102] Schneider, H.D., & Hopp, J.P . ( 2011). The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clinical Linguistics & Phonetics, 25( 6-7), 640-654
[103] Sehm, B., Kipping, J., Sch?fer, A., Villringer, A., & Ragert, P. ( 2013). A comparison between uni- and bilateral tDCS effects on functional connectivity of the human motor cortex. Frontiers in Human Neuroscience, 7, 183
[104] Sehm, B., Sch?fer, A., Kipping, J., Margulies, D., Conde, V., Taubert, M., ... Ragert, P. ( 2012). Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. Journal of Neurophysiology, 108( 12), 3253-3263
[105] Shimamura, A. P., Jurica, P. J., Mangels, J. A., Gershberg, F. B., & Knight, R. T. ( 1995). Susceptibility to memory interference effects following frontal lobe damage: Findings from tests of paired-associate learning. Journal of Cognitive Neuroscience, 7( 2), 144-152
[106] Shimoni, M., Engel-Yeger, B., & Tirosh, E. ( 2012). Executive dysfunctions among boys with attention deficit hyperactivity disorder (ADHD): Performance-based test and parents report. Research in Developmental Disabilities, 33( 3), 858-865
[107] Smith, J. L., Jamadar, S., Provost, A. L., & Michie, P. T. ( 2013). Motor and non-motor inhibition in the Go/NoGo task: An ERP and fMRI study. International Journal of Psychophysiology, 87( 3), 244-253
[108] Smith, J. L., Johnstone, S. J., & Barry, R. J. ( 2008). Movement-related potentials in the Go/NoGo task: The P3 reflects both cognitive and motor inhibition. Clinical Neurophysiology, 119( 3), 704-714
[109] Soltaninejad, Z., Nejati, V., & Ekhtiari, H. ( 2015). Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD. Journal of Attention Disorders, 101( 4), 291-302
[110] Stramaccia, D. F., Penolazzi, B., Sartori, G., Braga, M., Mondini, S., & Galfano, G. ( 2015). Assessing the effects of tDCS over a delayed response inhibition task by targeting the right inferior frontal gyrus and right dorsolateral prefrontal cortex. Experimental Brain Research, 233( 8), 2283-2290
[111] Sumner, P., Nachev, P., Morris, P., Peters, A. M., Jackson, S. R., Kennard, C., & Husain, M. ( 2007). Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron, 54( 5), 697-711
[112] Thakkar, K. N., Polli, F. E., Joseph, R. M., Tuch, D. S., Hadjikhani, N., Barton, J. J. S., & Manoach, D. S. ( 2008). Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD). Brain, 131( 9), 2464-2478
[113] van Campen, A. D., Kunert, R., van den Wildenberg, W. P. M., & Ridderinkhof, K. R. ( 2018). Repetitive transcranial magnetic stimulation over inferior frontal cortex impairs the suppression (but not expression) of action impulses during action conflict. Psychophysiology, 55( 3), e13003
[114] Vicario, C.M., & Nitsche, M.A . ( 2013). Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: State of the art, current limits and future challenges. Frontiers in Systems Neuroscience, 7, 94
[115] Wessel, J.R., & Aron, A.R . ( 2015). It's not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm. Psychophysiology, 52( 4), 472-480
[116] Wood, J.N., & Grafman, J.( 2003). Human prefrontal cortex: Processing and representational perspectives. Nature Reviews Neuroscience, 4( 2), 139-147
[117] Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., ... Nitsche, M. A. ( 2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127( 2), 1031-1048
[118] Woods, A. J., Hamilton, R. H., Kranjec, A., Minhaus, P., Bikson, M., Yu, J., & Chatterjee, A. ( 2014). Space, time, and causality in the human brain. NeuroImage, 92( Suppl. C), 285-297
[119] Yasumura, A., Kokubo, N., Yamamoto, H., Yasumura, Y., Nakagawa, E., Kaga, M., ... Inagaki, M. ( 2014). Neurobehavioral and hemodynamic evaluation of Stroop and reverse Stroop interference in children with attention- deficit/hyperactivity disorder. Brain & Development, 36( 2), 97-106
[120] Yu, J. X., Tseng, P., Hung, D. L., Wu, S. W., & Juan, C. H. ( 2015). Brain stimulation improves cognitive control by modulating medial-frontal activity and preSMA-vmPFC functional connectivity. Human Brain Mapping, 36( 10), 4004-4015
[121] Zandbelt, B. B., Bloemendaal, M., Hoogendam, J. M., Kahn, R. S., & Vink, M. ( 2013). Transcranial magnetic stimulation and functional mri reveal cortical and subcortical interactions during stop-signal response inhibition. Journal of Cognitive Neuroscience, 25( 2), 157-174
[122] Zhang, B. W., Xu, J., & Chang, Y. ( 2016). The effect of aging in inhibitory control of major depressive disorder revealed by event-related potentials. Frontiers in Human Neuroscience, 10, 116
[123] Zhang, W.H., & Lu, J.M . ( 2012). Time course of automatic emotion regulation during a facial Go/Nogo task. Biological Psychology, 89( 2), 444-449
[124] Zhu, D. C., Zacks, R. T., & Slade, J. M. ( 2010). Brain activation during interference resolution in young and older adults: An fMRI study. NeuroImage, 50( 2), 810-817
[125] Zmigrod, S., Colzato, L. S., & Hommel, B. ( 2014). Evidence for a role of the right dorsolateral prefrontal cortex in controlling stimulus-response integration: A transcranial direct current stimulation (tDCS) study. Brain Stimulation, 7( 4), 516-520




[1]陈钰, 莫李澄, 毕蓉, 张丹丹. 新生儿语音感知的神经基础:元分析[J]. 心理科学进展, 2020, 28(8): 1273-1281.
[2]王协顺, 苏彦捷. 从动作模仿到社会认知:自我-他人控制的作用[J]. 心理科学进展, 2019, 27(4): 636-645.
[3]王劭睿, 陈红. 为何越减越肥?——限制性饮食者过度进食的心理机制及影响因素[J]. 心理科学进展, 2019, 27(2): 322-328.
[4]魏华, 周仁来. 焦虑个体抑制控制缺陷的研究现状和争议:基于注意控制理论视角[J]. 心理科学进展, 2019, 27(11): 1853-1862.
[5]苏波波, 郑美红. 物质相关线索对成瘾者反应抑制的影响[J]. 心理科学进展, 2019, 27(11): 1863-1874.
[6]孙岩, 房林, 王亭予, 崔丽. 自闭症谱系障碍者抑制控制的影响因素及神经机制[J]. 心理科学进展, 2018, 26(8): 1450-1464.
[7]成梅, 杨燕, 尹华站. 经颅直流电刺激在注意缺陷多动障碍治疗中的应用[J]. 心理科学进展, 2018, 26(4): 657-666.
[8]Qing He, Bo-Rong Lin, Chang-Bing Huang. Two, but not one, sessions’ anodal tDCS improved contrast sensitivity[J]. 心理科学进展, 2017, 25(suppl.): 85-85.
[9]常欣, 白鹤, 王沛. 双语者语言切换代价的影响因素[J]. 心理科学进展, 2017, 25(9): 1469-1478.
[10]邓之君, 吴慧中, 陈英和. 数字空间联结的工作记忆机制[J]. 心理科学进展, 2017, 25(9): 1492-1502.
[11]闫丁;汪婷;王程瑶;焦璨. 饮酒对反应抑制的影响及其神经机制[J]. 心理科学进展, 2017, 25(4): 586-598.
[12]陈杰, 刘雷, 王蓉, 沈海洲. 音乐训练对执行功能的影响[J]. 心理科学进展, 2017, 25(11): 1854-1864.
[13]杨 玲, 马雪, 曹华, 苏波波, 徐景, 蔡雨彤. 冰毒使用者抑制控制的损伤、可逆性及干预策略[J]. 心理科学进展, 2017, 25(10): 1769-1779.
[14]李雪姣;邹枝玲. 经颅直流电刺激技术在物质依赖治疗中的应用[J]. 心理科学进展, 2016, 24(9): 1398-1408.
[15]严万森;张冉冉;刘苏姣. 冲动性对不同成瘾行为发展的调控及其神经机制[J]. 心理科学进展, 2016, 24(2): 159-172.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4504
相关话题/心理 科学 控制 神经 技术

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 个人主义上升, 集体主义式微?——全球文化变迁与民众心理变化
    黄梓航1,2,3,敬一鸣1,2,3,喻丰4,古若雷1,2,3,周欣悦5,张建新3,6,蔡华俭1,2,3()1中国科学院心理研究所行为科学重点实验室,北京1001012中国科学院心理研究所人格与社会心理研究中心,北京1001013中国科学院大学,北京1000494西安交通大学人文社会科学学院,西安71 ...
    本站小编 Free考研考试 2022-01-01
  • 自尊稳定性的认知神经机制
    王轶楠()心理学国家级实验教学示范中心(北京师范大学),北京100875收稿日期:2018-01-24出版日期:2018-10-15发布日期:2018-08-27通讯作者:王轶楠E-mail:yynnwang@gmail.com基金资助:*国家自然科学基金青年项目(31700978)Neuralme ...
    本站小编 Free考研考试 2022-01-01
  • 主动控制感的测量及认知神经机制
    张淼1,2,吴迪1,2,李明3,凌懿白1,2,张明4,5,赵科1,4()1中国科学院心理研究所,脑与认知科学国家重点实验室,北京1001012中国科学院大学心理学系,北京1000493吉首大学,湖南吉首4160004中国科学院心理研究所心理健康重点实验室,北京1001015大连医科大学心理学系,大连 ...
    本站小编 Free考研考试 2022-01-01
  • 积极心理干预是“新瓶装旧酒”吗?
    段文杰1(),卜禾21武汉大学社会学系,武汉4300002香港城市大学应用社会科学系,香港收稿日期:2017-12-25出版日期:2018-10-15发布日期:2018-08-27通讯作者:段文杰E-mail:duan.w@whu.edu.cn基金资助:*武汉大学人文社会科学青年****学术发展计划 ...
    本站小编 Free考研考试 2022-01-01
  • 远离“诱惑”:预先承诺对跨期决策的调控机制及其神经基础
    利振华1,窦凯1,2(),聂衍刚1,2()1广州大学教育学院2广州大学广州人心理与行为研究中心,广州510006收稿日期:2018-02-05出版日期:2018-10-15发布日期:2018-08-27通讯作者:窦凯,聂衍刚E-mail:psydk@gzhu.edu.cn;nie-yangang@g ...
    本站小编 Free考研考试 2022-01-01
  • 解释水平对自我控制的影响
    张玥1,2,窦东徽1(),辛自强11中央财经大学社会与心理学院心理学系,北京1000812北京师范大学心理学部,北京100875收稿日期:2017-05-02出版日期:2018-10-15发布日期:2018-08-27通讯作者:窦东徽E-mail:psychaos@126.com基金资助:*国家社会 ...
    本站小编 Free考研考试 2022-01-01
  • 为他人做决策:多维度心理机制与决策体验
    陆静怡*(),尚雪松华东师范大学心理与认知科学学院,上海200062收稿日期:2017-12-24出版日期:2018-09-15发布日期:2018-07-30通讯作者:陆静怡E-mail:jylu@psy.ecnu.edu.cn基金资助:国家自然科学基金(71771088);上海市教育发展基金会和上 ...
    本站小编 Free考研考试 2022-01-01
  • 舌尖上的“自虐”——食辣中的心理学问题
    傅于玲1,2,邓富民1,*(),杨帅3,徐玖平11四川大学商学院,成都6100412成都理工大学心理健康教育中心,成都6100593重庆邮电大学教育发展研究院,重庆400065收稿日期:2017-10-16出版日期:2018-09-15发布日期:2018-07-30通讯作者:邓富民E-mail:de ...
    本站小编 Free考研考试 2022-01-01
  • 数字效应对消费者行为的影响及其心理机制
    吴莹皓,蒋晶*()中国人民大学商学院,北京100872收稿日期:2017-08-02出版日期:2018-09-15发布日期:2018-07-30通讯作者:蒋晶E-mail:jiangjing@rmbs.ruc.edu.cnThenumerosityeffectsinconsumerbehaviorW ...
    本站小编 Free考研考试 2022-01-01
  • 基于知觉的恐惧泛化的认知神经机制
    雷怡1,2,3(),梅颖1,2,3,张文海4,李红1,2,31深圳大学心理与社会学院2深圳市情绪与社会认知科学重点实验室3深圳市神经科学研究院,深圳5180004江苏省盐城工学院心理健康教育中心,盐城224003收稿日期:2017-02-23出版日期:2018-08-15发布日期:2018-07-0 ...
    本站小编 Free考研考试 2022-01-01