1.State Key Laboratory of Quantum Optics and Quantum Optics Decices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China 2.Department of Physics, School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China 3.Department of Opto-Ectronics Engineering, School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China 4.Department of Physics, Tsinghua University, Beijing 100084, China 5.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11974226, 61905133, 11774210, 61875111), the National Key R&D Program of China (Grant No. 2017YFA0304502), the Shanxi Provincial Graduate Education Innovation Project, China (Grant No. 2020BY024), and the Shanxi Provincial 1331Project for the Key Subjects Construction, China
Received Date:15 May 2021
Accepted Date:01 July 2021
Available Online:17 August 2021
Published Online:05 December 2021
Abstract:For the experimental implementation of an optically pumped atomic magnetometer, the magnetic resonance signal with a narrow linewidth and a high signal-to-noise ratio (SNR) is required for achieving a high sensitivity. Using 795-nm laser as both the pumping and the probe laser, we compare the magnetic resonance signals from different rubidium atomic vapor cells and investigate the variations of magnetic resonance signals with temperature. Optimized magnetic resonance signal is achieved with a paraffin-coated rubidium atomic vapor cell. Then the 780-nm laser at rubidium D2 line is introduced as a repumping laser, and we explore the changes of linewidth and SNR of the magnetic resonance signal under different power of the pumping laser and the repumping laser. Owing to the 780-nm repumping laser beam, the signal amplitude of rubidium-85 magnetic resonance signal is improved remarkably because more rubidium-85 atoms are spin- polarized by the 795-nm pumping laser beam. At the same time, the linewidth of rubidium-85 magnetic resonance signal is roughly not broadened anymore. We realize a closed-loop optically pumped rubidium-85 atomic magnetometer with a bandwidth of ~1.2 kHz, and the sensitivity is calibrated to be ~245.5 pT/Hz1/2 only with the 795-nm pumping laser beam. Owing to the employment of the 780-nm repumping laser beam, the sensitivity is improved to be ~26.4 pT/Hz1/2 which is improved roughly by one order of magnitude. We also calibrate the measurement accuracy and deviation of a commercial fluxgate magnetometer by using the enhanced rubidium magnetic resonance signal. Keywords:optically pumped rubidium atomic magnetometer/ linewidth of magnetic resonance signal/ signal-to-noise ratio/ repumping light/ fluxgate magnetometer’s calibration
首先定性分析对比不同原子气室产生的磁共振信号. 对于典型的充缓冲气体和镀石蜡的自然丰度铷原子气室的磁共振信号如图3所示. 实验中选用的缓冲气体为20 Torr (1 Torr = 133.3224 Pa) He和10 Torr Ne, 其典型的磁共振信号如图3(a)所示, 当激光频率调谐至铷-85原子共振频率时, 铷-85和铷-87的磁共振谱同时出现. 而对于只在原子气室内壁镀石蜡膜的气室, 相同参数下其磁共振信号如图3(b), 此时原子的基态旋磁比值可精确至该超精细跃迁线. 且从两种气室磁共振信号的对比中可以看出, 在相同的温度、轴向直流偏置磁场条件下, 对于充缓冲气体的铷原子气室, 缓冲气体带来的碰撞展宽使磁共振信号线宽明显展宽, 且文献[21]也分析了反抽运光对铷原子系综产生的退极化影响. 故充缓冲气体铷原子气室的这种特征不仅不利于磁强计灵敏度的提高, 而且严重影响实验中用磁共振谱对商用磁通门磁强计的校准(3.4节讨论). 对于只充有天然丰度铷原子、不充缓冲气体、气室内壁也不镀石蜡的铷原子气室, 由于铷原子与气室内壁的碰撞及铷原子之间的碰撞比较激烈, 铷原子的自旋弛豫时间短, 磁共振信号微弱, 实验中并没有看到较明显的磁共振信号. 故本实验中选择镀石蜡的铷原子气室进行后续实验操作. 图 3 不同原子气室下的磁共振信号 温度40 ℃, 铷-85 (F = 3)对应的旋磁比为4.69538 Hz/nT, 轴向直流偏置磁场~8.87 μT, 795 nm波长窄线宽单频连续极化光(同时也是探测光)功率~200 μW, 光斑高斯直径~7.3 mm, 频率共振于铷-85原子$ (F\;=\;3) $?$(F′\;=\;2)$超精细跃迁. 图(a)为充有20 Torr He和10 Torr Ne的自然丰度铷原子气室, 铷-85原子对应的磁共振信号半高全宽~6.1 kHz; 图(b)为不缓冲气体、气室内壁镀石蜡的自然丰度铷原子气室, 磁共振信号半高全宽~3.3 kHz Figure3. Magnetic resonance signal at different rubidium vapor cells at temperature 40 ℃. The magnetogyric ratio of the 85Rb (F = 3) is 4.69538 Hz/nT, the static magnetic field is ~8.87 μT, the 795-nm pumping laser beam’s power is ~200 μW, the Gaussian diameter is ~7.3 mm and the frequency is locked to the 85Rb $ (F\;=\;3) $?$(F′\;=\;2)$ transition. Fig.3(a) shows the 85Rb + 87Rb vapor cell filled with 20 Torr of Helium (He) and 10 Torr of Neon (Ne) as the buffer gases, the magnetic resonance signal’s line width(FWHM) is ~6.1 kHz. Fig.3 (b) shows the 85Rb + 87Rb vapor cell with paraffin-coating (without the buffer gas), the magnetic resonance signal’s linewidth (FWHM) is ~3.3 kHz.
不同气室温度对磁共振信号的影响如图4所示. 795 nm波长窄线宽单频连续极化光(同时也是探测光)光强为200 μW, 共振于铷-85原子D1线的$(F\;= $$ \;3) $—$(F′\;=\;2)$超精细跃迁线, 直流偏置磁场8.87 μT (铷-85 (F = 3)对应的旋磁比为4.69538 Hz/nT, 对应的拉莫尔进动频率为41.66 kHz). 当原子气室温度分别控制在27, 35, 40, 45 ℃时, 其原子数密度可估算得出[24]. 图4显示, 随着原子数密度的增加, 磁共振信号的信号幅度变大. 对不同温度下的磁共振信号进行洛伦兹线型拟合, 磁共振信号的半高全宽也随温度的升高而展宽, 主要的贡献因素是光场的强度梯度及原子气室内的碰撞(铷原子间自旋破坏碰撞、铷原子与气室内壁间自旋破坏碰撞等). 但原子数密度越大, (4)式中$ \Delta \nu/{\rm{SNR}} $的比值越小, 磁强计的灵敏度越高, 可认为原子数密度的增大、磁共振信号幅值的增大占主导地位. 故理论上温度越高, 磁强计的灵敏度越高, 但受限于铷原子气室内壁石蜡膜的熔点(~55 ℃), 为保护原子气室内壁石蜡膜不受破坏, 后续实验将温度控制在45 ℃. 图 4 不同温度(27?45 ℃)下的磁共振信号 27, 35, 40, 45 ℃温度下磁共振信号的半高全宽分别为~2.2, ~2.7, ~3.3, ~4.0 kHz Figure4. The magnetic resonance signals at different temperatures (27?45 ℃): The linewidth (FWHM) of the magnetic resonance signals are ~2.2 kHz@27 ℃, ~2.7 kHz@35 ℃, ~3.3 kHz@40 ℃, and 4.0 kHz@45 ℃, respectively.
内壁镀石蜡抗自旋弛豫膜的铷原子气室, 温度控制在45 ℃, 将795 nm波长窄线宽单频连续极化光(同时也是探测光)频率调谐至铷-85原子D1线的$ (F\;=\;3) $—$(F′\;=\;2)$ 超精细跃迁, 改变影响磁共振信号的参数(795 nm波长窄线宽单频连续极化光(同时也是探测光)功率、交变磁场强度)进行分析并选定了最优参数值下的磁共振信号如图4所示(对应原子气室温度45 ℃), 此时各参数分别为: 795 nm波长窄线宽单频连续极化光(同时也是探测光)光强为200 μW、产生交变磁场的信号源幅值为0.1 V、直流偏置磁场为8.87 μT. 此时在扫描交变磁场频率时, 对应的磁共振线宽约为4.0 kHz; 慢扫描直流偏置磁场时, 对应的磁共振线宽约为852 nT. 调制解调的同位相和正交位相信号如图5所示, 将频率锁定在正交位相零点幅值对应的频率处, 即实现拉莫尔进动频率的锁定. 下一步将讨论在此基础上, 加入780 nm波长窄线宽单频连续反抽运光后磁共振信号信号幅值和线宽的变化情况. 图 5 锁相放大器调制解调信号, 温度45 ℃, 795 nm波长窄线宽单频连续极化光(同时也是探测光)光强200 μW, 轴向直流偏置磁场~8.87 μT, 光斑高斯直径~7.3 mm, 频率共振于铷-85原子$ (F\;=\;3) $?$(F′\;=\;2)$超精细跃迁. 解调后同位相信号的半高全宽为~4.0 kHz Figure5. The modulation and demodulation signal of the lock-in amplifier: the red curve is the demodulated in-phase signal. The blue curve is the out-of-phase gradient after demodulation. The 795-nm pumping laser beam’s power is ~200 μW, the static magnetic field is ~8.87 μT, the Gaussian diameter is ~7.3 mm and the frequency is locked to the 85Rb $ (F\;=\;3) $?$(F′\;=\;2)$ transition line. The linewidth (FWHM) of the magnetic resonance signal is ~4.0 kHz.
23.3.引入780 nm波长窄线宽单频连续反抽运光情形下的实验结果及讨论 -->
3.3.引入780 nm波长窄线宽单频连续反抽运光情形下的实验结果及讨论
在仅采用795 nm波长窄线宽单频连续极化光(同时也是探测光)的最优参数基础上, 加入780 nm波长窄线宽单频连续反抽运光, 频率调谐至铷-85原子D2线$ (F\;=\;2) $—$(F′′\;=\;3)$超精细跃迁线, 分别改变780 nm波长窄线宽单频连续反抽运光功率和795 nm波长窄线宽单频连续极化光(同时也是探测光)功率, 磁共振信号的变化情况如图6所示. 图 6 不同780 nm波长窄线宽单频连续反抽运光和795 nm波长窄线宽单频连续极化光(同时也是探测光)功率下磁共振信号的线宽、信号幅值的变化情况 Figure6. The variation of linewidth (FWHM) and signal amplitude of magnetic resonance signal under different power of pumping and repumping laser beam.
式中$ \Delta B $为标定场的磁场强度. 在交变磁场方向上(沿x轴方向)的另一组亥姆霍兹线圈对, 用低噪声的交流电源驱动, 产生特定频率的交变磁场, 对光泵铷原子磁强计的灵敏度进行标定. 标定时保持795 nm波长窄线宽单频连续极化光(同时也是探测光)功率200 μW, 频率共振于铷-85原子D1线$ (F\;=\;3) $—$(F′\;=\;2)$超精细跃迁线; 780 nm波长窄线宽单频连续反抽运光功率300 μW, 频率共振于铷-85原子D2线$ (F\;=\;2) $—$(F′′\;=\;3)$ 超精细跃迁, 定标场的磁场强度4.7 nT. 典型的有无780 nm波长窄线宽单频连续反抽运光情况下的磁场灵敏度如图7所示, 其中定标频率为63 Hz. 如图7所示, 在仅有795 nm波长窄线宽单频连续极化光(同时也是探测光)存在时, 3—100 Hz的灵敏度为245.5 pT/Hz1/2; 加入780 nm波长窄线宽单频连续反抽运光后, 由于处于极化态的原子数增多, 标定场的信号幅值显著增大, 同时透射光子数的减小也使得背景噪声幅值明显减小, 两者综合作用下15—100 Hz磁场的灵敏度为26.4 pT/Hz1/2. 此时3—15 Hz处隆起的噪声本底可能是780 nm波长窄线宽单频连续反抽运光的额外强度噪声. 且从图7(a)和图7(b)对比中可以看出, 加入780 nml波长窄线宽单频连续反抽运光后, 可以清晰看到磁屏蔽筒内残余的50 Hz工频交变磁场信号, 强度约92.4 pT. 同时, 我们也将标定场频率放到103, 203, 503, 1003 Hz处进行标定, 结果表明, 在1.2 kHz频率范围内, 引入780 nm波长窄线宽单频连续反抽运光后的磁场灵敏度都有近1个数量级的提高. 图 7 有无780 nm波长窄线宽单频连续反抽运光情况下磁场灵敏度, 标定场频率63 Hz, 磁场强度4.7 nT(a)在仅有795 nm波长窄线宽单频连续极化光(同时也是探测光)(功率200 μW, 共振于铷-85原子D1线$ (F\;=\;3) $?$(F′\;=\;2)$超精细跃迁)情况下的磁场灵敏度; (b)加入780 nm波长窄线宽单频连续反抽运光(功率300 μW, 共振于铷-85原子D2线$ (F\;=\;2) $?$(F′′\;=\;3)$超精细跃迁)情况下的磁场灵敏度 Figure7. The sensitivity of the magnetometer: The calibration field frequency is 63 Hz and the magnetic field strength is 4.7 nT: (a) The magnetic field sensitivity in the presence of pumping laser beam (the frequency is resonant with $ (F\;=\;3) $?$(F′\;=\;2)$ hyperfine transition line of 85Rb D1 line with the power of 200 μW); (b) the magnetic field sensitivity with the addition of repumping laser beam (the frequency is resonant with $ (F\;=\;2) $?$(F′′\;=\;3)$ hyperfine transition line of 85Rb D2 line with the power of 300 μW).
在相同的直流偏置磁场线圈电流下, 用磁通门磁强计测量得到的磁场值相对于用磁共振信号测量得到的磁场值的对比如图9所示. 图 9 磁通门磁强计测量磁场值与磁共振信号测量磁场值的关系 (a)蓝红点线为磁通门磁强计测量磁场值相对于铷原子光泵磁强计测量磁场值的对比; (b) 磁通门磁强计测量磁场值相对磁共振信号测量磁场值的相对偏差 Figure9. The relationship of the magnetic field measured by fluxgate magnetometer and magnetic resonance signal: (a) The blue and red dot lines are the comparison of the magnetic field measured by the fluxgate magnetometer and the rubidium atom optical pump magnetometer; (b) shows the relative deviation of the magnetic field measured by fluxhgate magnetometer compared with magnetic resonance signal.
表1磁通门磁强计与铷原子磁共振信号标定磁场的相对误差值 Table1.Relative error value of magnetic field calibration between fluxgate magnetometer and rubidium atomic magnetic resonance signal.