Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11974232, 11727813)
Received Date:08 May 2021
Accepted Date:13 June 2021
Available Online:15 August 2021
Published Online:05 November 2021
Abstract:The cavitation effects occur in the ultrasound therapy technology. With the development of ultrasound therapy technology, cavitation effect in biological tissues has attracted more and more attention. The aim of the present study is to discuss the factors affecting cavitation nucleation and dynamics in tissues, and to provide a theoretical reference for the application of cavitation effects to ultrasound therapy. A model is developed for the cavitation inception in a spherical liquid cavity wrapped by an elastic medium. The Blake threshold value and the critical radius of the liquid cavity for the generation of spherical bubbles are obtained by the pressure equilibrium relationship. The effects of the excitation frequency, the volume modulus of the medium and the volume of the liquid in the cavity on the bubble vibration behavior are analyzed by deriving a bubble dynamic equation that consider the elastic effect of the medium outside the cavity using Lagrange equation. It is shown that the volume modulus, initial radius of bubble nucleus and surface tension can affect the Blake threshold pressure and bubble size, and those form a parameter reference for the control conditions that trigger or inhibit cavitation. The gas core can rapidly grow to a new equilibrium radius and oscillate under the action of an acoustic wave, and the bubble equilibrium radius is independent of the external field, but it can affect the bubble dynamic behavior. When the frequency of the ultrasonic signal is equal to the natural oscillation frequency of the bubble, the bubble collapses after several periods of intense vibration, and the pressure fluctuation in the liquid in the cavity is obvious. The response of bubbles under high frequency ultrasonic driving is relatively weak, and the oscillations of bubbles are dominated by free oscillation. Keywords:elastic medium/ liquid cavity/ Blake threshold/ cavitation mechanics
其中, $ {P_{\text{A}}}\left( t \right) $为驱动外力. 根据(14)式和(16)式可得空腔内液体与气泡组成的系统的拉格朗日量($ L = {E_{\text{k}}} - \Delta W $), 代入(12)式即可得到球形液腔中考虑液体介质黏性耗散影响后的气泡动力学方程为
式中参数取值参考HIFU (high intensity focused ultrasound)治疗中常用的驱动频率3.5 MHz, 声压幅值1 MPa, $ {N_1} = 10 $, 泡核和腔体初始半径分别为${R_{{\text{b}}0}} = 1{\text{ μm}}$, ${R_{{\text{c0}}}} = 30{\text{ μm}}$, 腔外介质体积模量$ {K_{\text{c}}} = 2.5{\text{ GPa}} $. 当液体腔环境压力发生变化, 气核半径也会变化, 形成振荡响应并趋于新的平衡半径, 且振荡响应随时间增加变弱, 但振荡频率随时间变化不大. 液体腔外弹性介质体积模量越小, 形成的振荡响应越强, 气核平衡半径变化越明显(图5(a)); 小空腔约束对振荡响应影响更为显著, 腔体初始半径与泡核比值越小, 气泡振荡越弱, 气核平衡半径变化越小(图6(a)), 这与Wang[16]的结果相符. 超声波能够激发气泡振荡, 但不影响气泡平衡半径. 图5(b)分析了超声作用下腔外体积模量Kc分别为0.1, 2.5和5 GPa时气泡半径随时间的变化曲线, 对比发现, 当Kc为2.5 GPa时, 腔内气泡剧烈振荡且在几个周期后破裂, 意味着此时超声频率最接近于气泡固有振荡频率, 气泡发生共振现象, 在图6(b)中也观察到了同样的现象, 说明腔体约束可影响气泡的共振行为. 图 5 腔外介质体积模量对空化泡振动行为的影响 (a)空腔中气泡瞬态振荡; (b)超声作用下空腔中气泡振荡 Figure5. Influence of volume modulus of medium outside cavity on vibration behavior: (a) A transient bubble oscillating in a cavity; (b) a bubble in a confinement subject to an acoustic wave.
图 6 不同Rc0 /Rb0 取值对空化泡振动行为的影响 (a)空腔中气泡瞬态振荡的影响; (b)超声作用下空腔中气泡振荡的影响 Figure6. Influence of different values of Rc0/Rb0 on the vibration behavior: (a) A transient bubble oscillating in a cavity; (b) a bubble in a confinement subject to an acoustic wave.
不同频率的超声波作用于腔内气泡形成的振荡响应不同, 当腔内气泡发生共振响应时, 气泡振动对腔内液体压强扰动最大, 如图7(a)所示. 气泡的响应同驱动超声的频率密切相关, 在本文给定的波函数的驱动下, 随着驱动声波频率的不同, 气泡声响应程度不同, 在低频区域内, 声波对气泡的影响更为显著(图7(a)、图7(b)); 在驱动声波频率远高于气泡共振频率时, 气泡的振动受声波的影响较小, 主要表现为自由振荡(图7(d)). 因此, 在利用中低强度超声进行治疗时, 可以调节超声频率使组织液压强变化位于合适范围, 以达到治疗目的. 图 7 不同频率外加驱动信号下气泡半径与液体压力的变化 (a) f = 1 MHz; (b) f = 5 MHz; (c) f = 10 MHz; (d) f = 15 MHz Figure7. Evolution of bubble radius and liquid pressure profiles at different driving frequencies: (a) f = 1 MHz; (b) f = 5 MHz; (c) f = 10 MHz; (d) f = 15 MHz.