Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11864007, 11564006)
Received Date:16 March 2021
Accepted Date:01 May 2021
Available Online:07 June 2021
Published Online:20 September 2021
Abstract:Based on the perturbation theory and generalized Bernoulli equation, the equations describing the radius, translation and deformation of a single gas bubble in ultrasonic field are derived. The evolutions of the radius, displacement and deformation of the bubble with time can be obtained by numerically calculating these equations. The calculation results show that when the initial radius of the bubble and the driving pressure both keep constant, the displacement and shape variable of the bubble increase with the augment of the initial translational velocity of the bubble’s center, and the non-spherical vibration of the bubble becomes more intense. However, the radial vibration of the bubble almost remains unchanged. When the initial translation velocity of the bubble is relatively small, the unstable region is concentrated only in the region of high driving sound pressure in the $R_{0}\text-p_{\rm a}$ phase diagram of the bubble. As the initial translational velocity increases, the region with small radius and driving sound pressure begins to show instability, and the overall unstable region gradually increases. In addition, a bubble presents different vibration characteristics at different positions in the acoustic standing wave field. The closer to the antinode of sound wave the bubble is, the greater the radial amplitude of the bubble’s vibration is. However, the variable of the translation and shape of the bubble are very small. The error between the plane fractions of the unstable region in the phase diagram of $R_{0}\text{-} p_ {\rm a}$ is less than 4%. Keywords:caviation bubble/ translation/ non-spherical oscillation/ instability
全文HTML
--> --> -->
2.含脉动、平移和形变的气泡动力学模型考虑不可压缩液体中的1个气泡, 且液体流动是无旋的. 以气泡中心为球坐标原点, 如图1所示. 气泡在超声波驱动和液体黏滞力作用下, 可能会沿x方向平动. 根据势流理论, 液体中气泡附近的速度势(?)满足拉普拉斯方程$ \nabla^{2}\phi $ = 0, 则液体中单个空化泡附近的速度势可以假定为[12,20] 图 1 含有气泡脉动、平移和形变的几何图形 Figure1. Geometry for single bubble with pulsation, translation and shape perturbation.
为研究声场分布对单气泡的径向振动、平移、形变、非球形振动和稳定性的影响, 计算模拟气泡在声驻波场中不同位置处的动力学行为. 声驻波场可以表示为$ p_{\rm d} = -p_{\rm a} \sin (wt) \cos (kd) $. 这里的k表示声波的波数, $ k = 1/\lambda = f/c $, d表示气泡到波腹点的距离, λ表示声波波长. 图5给出波腹点不同位置处, 气泡的半径、平移位移和形变随时间的演化图像. 从图5可以看出, 当d从0变化到λ/2时, 气泡振动过程中径向部分的最大半径压缩比$ R/R_{0} $从2.5减小到1.5, 如图5(a)所示, 这说明气泡在波腹处的振动比较剧烈. 气泡中心的位移和气泡形变变化较小 (如图5(b)和图5(c)). 图 5 不同位置处, 气泡半径、平移位移和形变随时间的演化图像($p_{\rm a}=1.15$ × 105 Pa, $R_{0}$ = 4.5 μm, $v_{x0}$ = 5 m/s) Figure5. Evolution of bubble’s radius, translation and deformation at different distance d from the antinodal point of acoustical wave. $p_{\rm a}=1.15$ × 105 Pa, $R_{0}$ = 4.5 μm, $v_{x0}$ = 5 m/s.
图6是对应d在0, λ/5, λ/4和λ/2处, 气泡的非球形振动图像. t = 0是初始时刻的图像. t = 10.63 μs是气泡膨胀到最大半径时的图像. t = 23.60 μs是气泡坍缩到最小半径时的图像. t = 24.02, 24.60, 34.60 μs是气泡反弹阶段的图像. 从图6可以看出, 气泡在d = 0 (波腹处), 气泡的形变较小. 随着d 值增大到λ/2处, 气泡的最大半径明显变小. 当t = 35.60 μs时, 气泡扭曲最大, 说明离波腹点的距离越大, 气泡越容易破裂. 图 6 不同位置处, 不同时刻气泡振动的形状($p_{\rm a}=1.15$ × 105 Pa, $R_{0}$ = 4.5 μm, $v_{x0}$ = 5 m/s) (a) d = 0; (b) d = λ/5; (c) d = λ/4; (d) d = λ/2 Figure6. Simulations of shapes of a gas bubble’s oscillation at different times at different distances from the antinodal of acoustical wave: (a) d = 0; (b) d = λ/5; (c) d = λ/4; (d) d = λ/2. $p_{\rm a}=1.15$ × 105 Pa, $R_{0}$ = 4.5 μm, $v_{x0}$ = 5 m/s.
图7是根据RT判据$ |a_{2}/R|\geqslant1 $, 数值计算得到的气泡在声驻波场中不同位置处的${R_{0}}{\text {-}}p_{\rm a}$相图. 从图7(a)—(d)可以看出, 4个不同位置处的不稳定性空间区域的面积分数非常接近, 相互之间的差值小于4%. 这说明声驻波场分布对气泡的整体不稳定性空间范围影响较小. 图 7 不同位置处, 气泡的$R_{0}$-$p_{\rm a}$相图($p_{\rm a}=1.15$ × 105 Pa, $R_{0}$ = 4.5 μm,$v_{x0}$ = 5 m/s) (a) d = 0; (b) d = λ/5; (c) d = λ/4; (d) d = λ/2 Figure7.$R_{0}$-$p_{\rm a}$ phase diagrams of a gas bubble at different distances from the antinodal of acoustical wave: (a) d = 0; (b) d = λ/5; (c) d = λ/4; (d) d = λ/2. $p_{\rm a}=1.15$ × 105 Pa, $R_{0}$ = 4.5 μm, $v_{x0}$ = 5 m/s.