1.School of Physical Science and Technology, Southwest University, Chongqing 400715, China 2.Key Laboratory of Science and Technology on High Energy Laser, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China 3.Guangdong Engineering Research Center for Light and Health, Guangdong Pharmaceutical University, Guangzhou 510315, China
Fund Project:Project supported by the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0015) and the Chongqing Municipal Training Program of Innovation and Entrepreneurship for Undergraduates, China (Grant No. S202010635022).
Received Date:15 March 2021
Accepted Date:14 June 2021
Available Online:13 October 2021
Published Online:20 October 2021
Abstract:Gold nanoparticles (Au NPs) play an important role in improving the external quantum efficiency of perovskite light emitting diodes (PeLED). To avoid direct contact between the Au NPs and the light emitting layer, the Au NPs@SiO2 structure and blending the Au NPs into the hole transport layer (HTL) or electron transport layer (ETL) have been proposed previously. However, the Au NPs@SiO2 is difficult to obtain and affects the charge transport. When the Au NPs is blended in poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT: PSS), the density of Au NPs is not easily controlled and the PEDOT:PSS is not an ideal HTL for PeLED. Therefore, the electrostatic adsorption is used in this work to uniformly disperse the ~20 nm-size Au NPs on the top of the ITO anode, and the Poly(9-vinylcarbazole) (PVK) is spin-coated as the HTL to achieve the high performance red PeLED based on the (NMA)2Csn–1PbnI3n+1. After the Au NPs modification, the maximum luminous brightness rises from ~5.2 to ~83.2 cd/m2. Meanwhile, the maximum external quantum efficiency rises from ~0.255% to ~6.98%. Mechanism studies show that microcavity can be formed between the Au NPs-modified ITO anode and the Al cathode, and the transmitted light and the reflected light interfere with each other to improve the output couple efficiency of the PeLED. The photoluminescence (PL) spectrum and angle dependent PL intensity of the Au NPs-modified PeLED prove that the fluorescence enhancement of the (NMA)2Csn–1PbnI3n+1 perovskite is attributed mainly to the microcavity effect. Furthermore, the effects of Au NPs density on the performance of the PeLED are investigated, which reveals that the device with ~15 min adsorption is optimal. Finally, we rule out the contributions of Au NPs to the morphology, crystallization, electrical properties and localized surface plasmon resonance (LSPR) effects of (NMA)2Csn–1PbnI3n+1 perovskite films. In this work, the Au NPs are successfully applied to red PeLED for the first time, providing a feasible way of developing the low-cost and high-efficiency PeLED. Keywords:gold nanoparticals/ electrostatic adsorption/ micocavity effect/ perovskite light emitting diodes
图1(a)展示了约15 min静电吸附的Au NPs修饰的ITO基板的SEM图像. 可以看出, Au NPs呈球形并均匀分布在ITO的顶部, 密度δ约为71.8 μm–2. Au NPs修饰的PeLED的器件结构如图1(b)所示. PVK层的厚度控制在约35 nm, 以确保Au NPs完全嵌入HTL中. 此外, 在图S1 (附加材料) 中比较了有、无Au NPs的PVK层的AFM图像. 在Au NPs加入前后, PVK的表面几乎保持相同. 对于有、无Au NPs修饰的PVK, 粗糙度分别约为0.31和0.34 nm. 这种光滑的表面有利于形成高质量的钙钛矿薄膜. 图 1 (a) 15 min静电吸附的Au NPs修饰的ITO表面的SEM图像和Au NPs修饰的PeLED结构示意图, 插图展示了Au NPs和PDDA分子式; 有、无Au NPs修饰的PeLED的(b)电流密度-电压 (J-V) 曲线, (c)亮度-电压曲线 (L-V) , (d)外量子效率 ( EQE-V) 曲线以及 (e) 约6 V下的EL谱 Figure1. (a) SEM image of the Au NPs modified ITO with 15 min electrostatic adsorption and schematic diagram of the device structure of Au NPs modified PeLED, the insets show the Au NPs and the molecular structure of PDDA; (b) the J-V curve, (c) the L-V curve, (d) EQE-V curve of PeLEDs with and without Au NPs modification, (e) EL spectrum of PeLEDs with and without Au NPs modification working at about 6 V.
有、无Au NPs修饰的PeLED的J-L-V特性如图1(b)—(d)所示. 图1(b)中的J-V特性显示有、无Au NPs 修饰PeLED的电流密度曲线几乎重叠. 这表明Au NPs可能不会改变器件的电学性能. 与J-V特性不同, Au NPs会明显改变L-V特性. 如图1(c)所示, Au NPs修饰的PeLED的Lmax约为83.2 cd/m2, 与无Au NPs的PeLED相比 (Lmax约为5.2 cd/m2) 提高了近16倍. 同时, PeLED的启亮电压 (定义为1 cdm–2亮度下的驱动电压) 在Au NPs修饰后从约5.0 V降低至约3.0 V. 图1(d)显示了有、无Au NPs修饰的PeLED的EQE-V特性. 其中EQE是通过电流效率和EL谱共同确定, 具体计算方法见参考文献[34]. Au NPs修饰的PeLED EQEmax约为6.98%, 而未被Au NPs修饰的EQEmax仅约为0.225%. 在约6 V驱动电压下的EL谱如图1(e)所示, Au NPs修饰的EL谱峰位约为674 nm, 相对于未被Au NPs修饰的EL谱峰位 (约672 nm) 发生了2 nm的红移. 相似的J-V特性但增强的L-V和EQE-V特性表明, Au NPs增强器件的光学性能而非增强器件的电学性能. 23.2.Au NPs修饰器件光学性能提升机制 -->
3.2.Au NPs修饰器件光学性能提升机制
从Au NPs对薄膜形貌、钙钛矿结晶、电学和光学性能三方面的影响, 对Au NPs提升器件效率的机制进行探究. 首先, 对有、无Au NPs修饰的(NMA)2Csn–1PbnI3n+1钙钛矿薄膜形貌进行SEM表征, 如图2(a)和图2(b). 可以看到(NMA)2Csn–1PbnI3n+1钙钛矿量子点的晶体尺寸约为5.6 nm, 且都形成了几乎没有孔洞的均匀致密的一层薄膜, 薄膜的覆盖率几乎都达到了100%. 因此, 引入Au NPs对(NMA)2Csn–1PbnI3n+1钙钛矿成膜几乎没有影响. 图 2 有、无Au NPs修饰的(NMA)2Csn–1PbnI3n+1钙钛矿薄膜 (a), (b) SEM图; (c) XRD图; (d), (e) UPS图; (f)单空穴器件的J-V曲线; (g) Au NPs溶液的吸收谱和有、无Au NPs修饰的(NMA)2Csn–1PbnI3n+1钙钛矿层的PL发射谱; (h)有、无Au NPs修饰的(NMA)2Csn–1PbnI3n+1薄膜PL lifetime曲线 Figure2. SEM images of (NMA)2Csn–1PbnI3n+1 film (a) with and (b)without Au NPs; (c) XRD patterns of (NMA)2Csn–1PbnI3n+1 film with and without Au NPs; (d), (e) UPS characterizations of (NMA)2Csn–1PbnI3n+1 film with and without Au NPs; (f) J-V curves of hole-only devices with and without Au NPs; (g) the absorption spectra of the Au NPs solution and the PL spectrums of the (NMA)2Csn–1PbnI3n+1 film with and without Au NPs; (h) PL lifetime decay curve of the (NMA)2Csn–1PbnI3n+1 film with and without the Au NPs.
预测Au NPs引发的微腔效应是(NMA)2Csn–1PbnI3n+1器件发光增强的主要机制. 在器件中, Al膜可以看作全反射镜, Au NPs修饰的ITO为部分反射镜, 如图3(a)所示. 于是, 在部分反射镜 (Au NPs修饰的ITO) 和全反射镜 (Al) 之间可以形成光学微腔. 光在此微腔结构中多次反射, 透射光 (实线) 与反射光 (虚线) 相互干涉, 并在满足一定条件下达到谐振. 微腔的谐振效果与发光波长、材料折射率以及腔体的光学长度密切相关[20]: 图 3 (a) 谐振腔结构示意图; (b) PL发射强度随TmPYPb厚度的变化曲线; 有、无Au NPs修饰的PeLED器件在不同TmPYPb厚度 (650, 1150 ?) 时的(c) PL发射谱和(d) PL强度随角度变化曲线 Figure3. (a) Schematic diagram of the micocavity structure; (b) the simulated evolution of PL intensity with TmPYPb thickness; (c) the PL spectrums and (d) the angle dependent of PL intensities of the PeLEDs with and without Au NPs at different TmPYPb thicknesses of about 650 and 1150 ?.
在静电吸附过程中, Au NPs的密度可以通过ITO在Au NPs溶液中吸附的时间来控制[25]. 我们分别制备了约5, 15和60 min吸附时间的PeLED器件. 不同吸附时间下, ITO表面Au NPs的SEM表征如图4(a)—(c)所示. 可以发现对应于5 min吸附时间的Au NPs密度δ大约为48.9 μm–2. 当吸附时间延长至15 min时, Au NPs密度δ提升约为71.8 μm–2. 当吸附时间超过15 min后, Au NPs开始发生团聚, 不再均匀地分布在ITO表面. 这可能是Au NPs之间范德瓦耳斯力作用结果. 图4(c)展示了吸附时间约为60 min时的ITO表面Au NPs分布情况. 此时, Au NPs已经发生严重的团聚. 图 4 (a)—(c) 依次为5, 15和60 min吸附时间的Au NPs在ITO表面的SEM图像; 5, 15和60 min PeLED的(d) J-V特性曲线, (e) L-V特性曲线和(f) EQE-V特性曲线; 5, 15和60 min PeLED的(g)亮度随时间变化和(h) EQE随时间变化曲线; (i) 5, 15和60 min PeLED在6 V下的EL谱 Figure4. (a)?(c) SEM images of Au NPs modified ITO substrates with 5, 15, and 60 min electrostatic adsorption, respectively; (d)?(f) J-V , L-V and EQE-V curves for 5, 15, and 60 min electrostatic adsorption, respectively; (g), (h) time evolutions of Lmax and EQEmax of PeLEDs with 5, 15, and 60 min electrostatic adsorption, respectively; (i) EL spectra of PeLEDs with 5, 15, and 60 min electrostatic adsorption working at about 6 V.