Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51861030) and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2019MS01002)
Received Date:02 April 2021
Accepted Date:23 May 2021
Available Online:07 June 2021
Published Online:05 October 2021
Abstract:In this paper, based on three-dimensional micromagnetic numerical simulation, the influences of the interface layer formed by the atomic diffusion at the interface on magnetic properties in parallel SmCo/Fe bilayer and perpendicular SmCo/Fe bilayer are investigated. For the parallel system, whose nucleation occurs in the second quadrant, as the interface layer thickness increases, the nucleation field and the pinning field increase gradually though the remanence decreases gradually, hence the maximum energy product first goes up and then comes down. As a result, in the system there occurs the transition from the exchange-spring to the rigid magnet. For the perpendicular system, with the increase of the interface layer thickness, a gradual transition from the first quadrant to the second quadrant happens to its nucleation. Although the pinning field experiences the changes from decreasing to unchanging and to increasing, the nucleation field and remanence both rise gradually. Therefore, the energy product is enhanced gradually. During the demagnetization, there appears a spin deviation within the film plane: the parallel system shows a progress of generation and disappearance of the flower and C states; however, the perpendicular system shows a progress of generation and disappearance of the vortex state. With the increase of the ratio of the SmCo atomic diffusion in the interface layer of parallel SmCo/Fe bilayers, the nucleation and pinning field go up, but the remanence decreases, and hence the maximum energy product first rises and then drops. For the two easy axis orientations and any interface layer thickness, the nucleation field rises with the increase of interface exchange energy constant, indicating that the existence of an interface layer between the soft layer and hard layer enhances the exchange coupling interaction between them. The model in this paper well simulates the relevant experimental results [ 2007 Appl. Phys. Lett. 91 072509]. Keywords:micromagnetic numerical simulation/ interface layer/ nucleation field/ energy product
2.计算模型与方法本文采用的模型是硬磁/软磁双层膜体系, 如图1 所示. 取硬磁/软磁双层膜体系界面的中心为坐标原点, 建立o-xyz坐标系, z轴假设垂直于膜面. 图1(a)和图1(b)分别显示的是易轴e和外加磁场H的方向平行x轴和z轴. 图1中变量t定义为每层的厚度, 上角标s, h和i分别代表软磁层、硬磁层和界面层. $t^{\rm{s}}$和$t^{\rm{h}}$分别是界面原子没有扩散时软磁层和硬磁层的厚度, 图中的z = 0平面是硬磁层与软磁层之间的界面. 为了与实验结果[30]相比较, 本文中的计算模型是硬磁相中界面附近的原子扩散到软磁相, 即界面层存在于原软磁相一侧. 从–t s到–t i、从–t i到0和从0到t h分别对应软磁层、界面层和硬磁层. 图 1 本文基本方案为t s + t i + t h = 15 nm, 计算范围从–t s到t h. 计算模型 (a) 易轴平行膜面; (b) 易轴垂直膜面 Figure1. The basic scheme in our work, with regions calculated from –t s to t h when t s + t i + t h = 15 nm. Fig. 1(a) and (b) show the model for the calculation of the easy axis parallel and perpendicular to the film plane, respectively.
为了充分揭示磁化反转机制, 应讨论不同外磁场下膜面内的自旋分布. 图4和图5分别显示$ t^{\rm i} $ = 4 nm时易轴平行与垂直膜面取向SmCo(5 nm)/Fe(10–$ t^{\rm i} $ nm)双层膜不同外场下四个关键角$ {\theta ^{\text{s}}} $, $ {\theta ^{{{\text{i}}_1}}} $, $ {\theta ^{{{\text{i}}_{\text{2}}}}} $和$ {\theta ^{\text{h}}} $对应膜面内的自旋分布. 图 4$ t^{\rm i} $ = 4 nm时易轴平行膜面SmCo(5 nm)/Fe(10–$ t^{\rm i} $nm)双层膜在不同外磁场下一些膜面内的自旋分布 (a) H = –5.3 kOe时的软磁层表面; (b) H = –8.7 kOe时的软磁层表面; (c) H = –10.7 kOe时的硬磁层与界面层第二界面; (d) H = –11.3 kOe时的硬磁层表面. 显示比例为1∶12, 即图中的每一个磁矩代表12 × 12个计算的磁矩 Figure4. The spin distributions within some film planes for the parallel SmCo(5 nm)/Fe(10–$ t^{\rm i} $ nm) bilayer with $ t^{\rm i} $ = 4 nm under various applied magnetic fields: (a) H = –5.3 kOe, the soft layer surface; (b) H = –8.7 kOe, the soft layer surface; (c) H = –10.7 kOe, the second interface between the hard and interface layers; (d) H = –11.3 kOe, the hard layer surface. The adopted ratio 1∶12 for presentation. This means that one displayed magnetic moment at the figure stands for 12 × 12 calculated moments.
图 5$ t^{\rm i} $ = 4 nm时易轴垂直膜面取向SmCo(5 nm)/Fe(10–$ t^{\rm i} $ nm)双层膜不同外磁场下四个关键角对应膜面内的自旋分布 (a) H = 10.7 kOe时的软磁层表面; (b) H = 10.7 kOe时的软磁层与界面层第一界面; (c) H = 2.7 kOe时的硬磁层与界面层第二界面; (d) H = –14.0 kOe时的硬磁层表面. 显示比例为1∶12, 即图中的每一个磁矩代表12 × 12个计算的磁矩 Figure5. The spin distributions corresponding to four key angles within the film plane for the perpendicular SmCo(5 nm)/Fe(10–$ t^{\rm i} $ nm) bilayer with $ t^{\rm i} $ = 4 nm under various applied magnetic fields: (a) H = 10.7 kOe, the soft layer surface; (b) H = 10.7 kOe, the first interface between the soft and interface layers; (c) H = 2.7 kOe, the second interface between the hard and interface layers; (d) H = –14.0 kOe, the hard layer surface. The adopted ratio 1∶12 for presentation. This means that one displayed magnetic moment at the figure stands for 12 × 12 calculated moments.
以上计算中SmCo原子在SmCo(5 nm)/Fe(10–$ t^{\rm i} $ nm)双层膜界面层中的扩散比例为50%. 为了讨论界面层厚度一定时, SmCo原子在界面层中的扩散比例对体系磁性能的影响, 我们计算了易轴平行膜面SmCo(5 nm)/Fe(10–$ t^{\rm i} $ nm)双层膜$ t^{\rm i} $ = 4 nm时, SmCo原子的扩散比例为10%, 30%, 50%, 70%和90%的磁性能, 计算结果见图8. 从图8中可以看出: 在SmCo(5 nm)/Fe(10–$ t^{\rm i} $ nm)双层膜中, 随着SmCo原子扩散比例的增加, 成核场和钉扎场(矫顽力机制为钉扎)增加, 但剩磁减小, 导致最大磁能积先增加后减小. 图 8 易轴平行膜面SmCo(5 nm)/Fe(10–$ t^{\rm i} $ nm)双层膜, 当$ t^{\rm i} $ = 4 nm时SmCo原子的扩散比例为10%, 30%, 50%, 70%和90%的 (a) 成核场HN、钉扎场HP和矫顽力HC; (b)剩磁Mr和最大磁能积 (BH)max. Figure8. (a) Calculated nucleation field HN, pinning field HP, and coercivity HC; (b) remanence Mr and maximum energy product (BH)max as functions of t i for parallel SmCo (5 nm)/Fe(10–$ t^{\rm i} $ nm) with $ t^{\rm i} $ = 4 nm when the ratio of SmCo atomic diffusion are 10%, 30%, 50%, 70% and 90%, respectively.
为了进一步阐明界面层对硬磁/软磁交换弹簧磁性影响的机理, 图9给出了模拟计算的易轴平行和垂直膜面取向SmCo(5 nm)/Fe(10–$ t^{\rm i} $ nm)双层膜的成核场HN随界面层厚度和界面耦合常数的变化. 理论计算表明: 在界面层厚度一定的情况下, 随着界面交换耦合常数的增加, 成核场增加; 在界面耦合常数一定的条件下, 随着界面层厚度的增加, 成核场增加, 这与我们之前的理论计算结果[31]定性一致. 磁反转过程开始于主要在软磁相中磁畴壁的成核, 之后是从软磁相到硬磁相磁畴壁的可逆生长和移动[42]. 所以, 界面层的存在和厚度的增加增强了硬磁相与软磁相之间的交换耦合作用. 图 9 界面层厚度$ t^{\rm i} $不同时SmCo(5 nm)/Fe(10–$ t^{\rm i} $ nm)双层膜的成核场HN随界面交换耦合常数Aint的变化曲线 (a) 易轴平行膜面; (b) 易轴垂直膜面 Figure9. Nucleation field HN as a function of the interface exchange energy constant Aint for various interface layer thicknesses $ t^{\rm i} $ in SmCo(5 nm)/Fe(10–$ t^{\rm i} $ nm) bilayers. (a) and (b) show the curves of the easy axis parallel and perpendicular to the film plane, respectively.