1.Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province, Guizhou Institute of Technology, Guiyang 550003, China 2.School of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, China 3.Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China 4.Fire and Rescue Branch of Chengdu city, Chengdu 610000, China 5.Faculty of Engineering, Toyama Prefectural University, Toyama 9390389, Japan
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 52162015), the Science and Technology Fund of Education Bureau of Guizhou Province, China (Grant No. [2020]1Y204), the Natural Science Foundation of Department of Education of Guizhou Province, China (Grant No. KY [2018]253), and the Doctor Starting Foundation of Guizhou Institute of Technology, China (Grant No. XJGC20190920)
Received Date:08 March 2021
Accepted Date:02 June 2021
Available Online:07 June 2021
Published Online:05 October 2021
Abstract:Piezoelectric ceramics are mainly used in the electronic fields such as actuators, sensors, etc. However, at present the piezoelectric ceramics widely used are lead-based ceramics, which are detrimental to the environment. Based on the needs of environmental protection and social sustainable development, the research of lead-free piezoelectric ceramics becomes urgent. (K, Na) NbO3 (KNN) lead-free piezoelectric ceramics have attracted much attention due to their high piezoelectric coefficient and Curie temperature. However, temperature stability of ceramics is poor, which limits their applications. In this work, (1–x)(Na0.52K0.48)0.95Li0.05NbO3-xCaZrO3(NKLN-xCZ) ceramics with temperature stability are prepared by two-step synthesis. The effects of CaZrO3 on the phase structure, microstructure and electrical properties of KNN-based ceramics are studied. The results show that the appropriate introduction of CaZrO3 can improve the sintering properties of the samples and obtain dense ceramics. All the samples have typical perovskite structure without impurity. With the increase of CaZrO3, the temperature of orthorhombic(O)-Tetragonal (T) phase transition (TO-T) and Curie temperature (TC) move from high temperature to low temperature, while the transition temperature (TO-R) moves from low temperature to room temperature, and then, tetragonal (T) phase and rhombohedral (R) phase coexist in NKLN-xCZ ceramics as $0.05 \leqslant x \leqslant0.06 $. When x = 0.05, the ceramics have high Curie temperature (Tc = 373 ℃), and show good piezoelectric and ferroelectric properties (piezoelectric constant d33 = 198 pC/N, planar electromechanical coupling coefficient kp = 39%, εr = 1140, tanδ = 0.034, Pr = 21 μC/cm2, Ec = 18.2 kV/cm) because of the density of ceramics and existence of R-T phase boundary around room temperature. In addition, the relative permittivity of ceramics changes with the increase of frequency, which shows a certain relaxation behavior. The relaxation characteristics can be expressed by the modified Curie-Weiss law (1/εr–1/εr,m) = C(T–Tm)α. With the increase of CZ content, the dispersion coefficient α of ceramics increases (x = 0.07, α = 1.96), which can be ascribed to A-site cation disorder induced by the addition of CZ. The temperature range of phase transition is widened because of the diffused R-T phase transition. Therefore, the ceramics have temperature-stable electrical properties: the kp of NKLN-0.05CZ ceramics is kept at 34%–39% (variation of kp$\leqslant 13\% $) in a temperature range of –50–150 ℃. It provides methods and ideas for further exploring the temperature stability of KNN-based ceramics. Keywords:lead-free piezoceramics/ (K, Na) NbO3/ R-T phase boundary/ temperature stability
图1为该陶瓷体系NKLN-xCZ的表面形貌图. 所有的晶颗粒表现为常见的矩形形状. 随CaZrO3含量的增加, 晶粒尺寸逐渐下降. 当x = 0时, 陶瓷晶粒表现为大晶粒被小晶粒围绕着. 然而, 随着CaZrO3含量进一步增加, 陶瓷晶粒逐渐变得致密, 并且晶粒尺寸也变得较小[21]. 晶粒尺寸减小应归因于过多的CaZrO3可能进入晶界, 抑制了晶粒生长[22,23]. 图2给出了该陶瓷体系密度. 随CaZrO3含量的增加, 陶瓷样品密度先增加后降低. 当x = 0.05时, 陶瓷样品密度达到最大值. 陶瓷致密性的改善, 有利于在高电场下陶瓷电畴转向更为充分完全, 进而产生大的压电性能[24]. 图 1 NKLN-xCZ陶瓷的表面形貌 (a) x = 0; (b) x = 0.04; (c) x = 0.05; (d) x = 0.09 Figure1. SEM surface micrographs of NKLN-xCZ ceramics: (a) x = 0; (b) x = 0.04; (c) x = 0.05; (d) x = 0.09.
图 2 NKLN-xCZ陶瓷密度 Figure2. Density of the NKLN-xCZ ceramics.
23.2.陶瓷晶相结构 -->
3.2.陶瓷晶相结构
图3(a)给出了在室温下测定NKLN-xCZ陶瓷的XRD. 所有样品都为单一的ABO3钙钛矿结构, 这表明CaZrO3与NKLN形成稳定的固溶体. 图3(b)给出了在2θ = 44°—50°范围内NKLN-xCZ陶瓷XRD图谱. 当x = 0时正交(O)相可以通过45°附近的衍射峰(002)和(020)来确定. 当$0< $$ x\leqslant0.04$时, 随着CZ含量增加, 晶相结构的变化为, 从正交(O)相到四方(T)相过渡. 然而, 当x > 0.06时, 45°附近的两个衍射峰合并成一个峰(200), 表明了三方(R)相的形成. 以上结果表明, 随CaZrO3增加, 陶瓷NKLN-xCZ的晶相结构发生改变, 并且T和R两相共存出现在组分为$0.05 \leqslant $$ x\leqslant 0.06 $. 图 3 (a) NKLN-xCZ陶瓷晶相结构; (b) NKLN-xCZ陶瓷在40°?50°特征峰 Figure3. (a) X-ray diffraction patterns of NKLN-xCZ ceramics; (b) the magnification for NKLN-CZ ceramics in the range of 40°?50°.
23.3.陶瓷介电性能 -->
3.3.陶瓷介电性能
为进一步研究NKLN-xCZ陶瓷晶相演变, 测试了陶瓷组分在温度为–100至200 ℃的介电性能, 如图4所示. 从图4可以看出: 所有陶瓷的相对介电常数随温度变化的曲线上都显示介电异常, 其类似于纯KNN陶瓷. 为了更为清楚的研究NKLN-xCZ陶瓷体系存在的介电异常, 选取各组分1.0 kHz频率下的介电损耗随温度变化的曲线, 作为研究对象. 介电损耗曲线的波峰用来确定组分的晶相相变: 三方(R)-正交(O)、正交(O)-四方(T)和三方(R)-四方(T)晶相相变[25]. 随着CaZrO3增加, 三方-正交(R-O)相变逐步向高温转移, 与此同时, 正交-四方(O-T)相变明显向低温转移. 结果, 当$0.05 \leqslant x \leqslant0.06 $时, 三方-四方(R-T)相界出现在室温附近, 这与X射线衍射图谱的结果是一致的. 图 4 在–100到200 ℃温度范围内NKLN-xCZ陶瓷的介温曲线(1 kHz) Figure4. Temperature dependence of dielectric constant and dielectric loss for NKLN-.CZ ceramics measured at 1 kHz in the temperature range from –100 to 200 ℃.
图5(a)—(c)给出了在30—500 ℃温度范围内的NKLN-xCZ陶瓷相对介电常数. 在室温以上, 陶瓷存在类似纯KNN的两个相转变, 其对应于正交-四方(O-T)相变, 四方-立方(T-C)相变[26]. 随CaZrO3增加, 这两个相变温度(TO-T和TC)向低温移动. 结果表明, 引入的CaZrO3导致NKLN-xCZ陶瓷的相变温度TO-T和居里温度TC下降. 图 5 (a)?(c)在30到500 ℃温度范围内NKLN-xCZ陶瓷介温曲线; (d) NKLN-xCZ陶瓷ln(1/εr–1/εm)与ln(T–Tm)关系曲线 Figure5. (a)?(c) Temperature dependence of dielectric constant for NKLN-xCZ ceramics in the temperature range from 30 to 500 ℃; (d) plots of ln(1/εr–1/εm) as a function of ln(T–Tm) for the NKLN-xCZ ceramics.