1.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 2.Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences, Shanghai 200050, China 3.University of Chinese Academy of Sciences, Beijing 100039, China 4.Key Laboratory of Space Active Opto-electronics Technology, Chinese Academy of Sciences, Shanghai 200050, China
Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304000), the National Natural Science Foundation of China (Grant Nos. 61971408, 61827823), the Science and Technology Major Project of Shanghai, China (Grant No. 2019SHZDZX01), the Shanghai Rising-Star Program, China (Grant No. 20QA1410900), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2020241), and the Open Project of Key Laboratory of Space Active Optical-electro Technology, Chinese Academy of Sciences
Received Date:12 March 2021
Accepted Date:25 March 2021
Available Online:07 June 2021
Published Online:20 September 2021
Abstract:Superconducting nanowire single photon detector (SNSPD) has been widely used in many fields such as quantum communication due to its extremely high detection efficiency, low dark count rate, high count rate, and low timing jitter. Compared with conventional single-photon detectors with planar structure, SNSPD is typically made a periodical meandering structure consisting of parallel straight nanowires. However, owing to its unique linear structure, the detection efficiency of SNSPD is dependent on the polarization state of incident light, thus limiting SNSPD’s applications in unconventional fiber links or other incoherent light detection. In this paper, a polarization-insensitive SNSPD with high detection efficiency is proposed based on the traditional meandering nanowire structure. A thin silicon film with a high refractive index is introduced as a cladding layer of nanowires to reduce the dielectric mismatch between the nanowire and its surroundings, thereby improving the optical absorption efficiency of nanowires to the transverse-magnetic (TM) polarized incident light. The cladding layer is designed as a sinusoidal-shaped grating structure to minimize the difference in optical absorption efficiency between the transverse electric (TE) polarized incident light and the TM polarized incident light in a wide wavelength range. In addition, the twin-layer nanowire structure and the dielectric mirror are used to improve the optical absorption efficiency of the device. Our simulation results show that with the optimal parameters, the optical absorption efficiency of nanowires to both of the TE polarized incident light and TM polarized incident light has a maximum of over 90% at 1550 nm, and the corresponding polarization extinction ratio is less than 1.22. The fabricated device possesses a maximum detection efficiency of 87% at 1605 nm and a polarization extinction ratio of 1.06. The measured detection efficiency exceeds 50% with a polarization extinction ratio less than 1.2 in a wavelength range from 1505 nm to 1630 nm. This work provides a reference for high-efficiency polarization-insensitive SNSPD in the future. Keywords:superconducting nanowire single photon detector/ detection efficiency/ polarization-insensitive
全文HTML
--> --> --> -->
2.1.器件设计
图1(a)为本文设计的SNSPD的横截面示意图, 从下到上, 器件分别由400 μm厚的Si衬底、13层Ta2O5/SiO2薄膜组成的分布式布拉格反射镜(distributed Bragg reflector, DBR)、双层纳米线结构、Si补偿层和上表面的正弦形光栅构成. 采用DBR和双层纳米线结构是为了使纳米线具有较高的光吸收效率[4]. 器件按照目标波长为1550 nm所设计, DBR中Ta2O5层和SiO2层的厚度分别为180 nm和268 nm; 双层纳米线结构中每层NbN纳米线的厚度为6 nm, 宽度和周期分别为75 nm和150 nm, 双层纳米线之间采用3 nm厚的SiO2作为绝缘层; 采用高折射率材料Si (n = 3.5)作为介质补偿层覆盖在纳米线侧边及上方. 图 1 (a)采用Si补偿层和正弦形光栅结构的SNSPD横截面示意图, 双层纳米线结构被制备在DBR上; (b)双层纳米线SNSPD光吸收效率随波长变化的仿真结果, 实线代表只叠加Si补偿层的SNSPD, 虚线代表裸纳米线SNSPD Figure1. (a) Cross-sectional schematic of the SNSPD with a Si compensation layer and a sinusoidal grating structure, the twin layer nanowire structure was prepared on a DBR; (b) simulated optical absorption as a function of the wavelength of the SNSPD with the twin-layer nanowires, solid lines denote the SNSPD only with a Si compensation layer, and dashed lines denote the SNSPD with bare nanowires.
不同波长下NbN薄膜的折射率采用椭偏仪测得, 在1550 nm处, 与空气(n = 1)相比, Si材料和NbN (n = 4.67–i3.32)之间的介电常数差异被大大降低. 图1(b)为利用有限元软件(Comsol Multiphysics, RF module)进行的不同结构SNSPD对TE和TM偏振光吸收效率随波长变化的数值仿真, 考虑到NbN材料色散效应的影响, 将其折射率作为波长的函数进行了参数设置. 图中虚线为暴露于空气中的裸纳米线SNSPD对应的仿真结果, 实线为叠加Si补偿层但无上表面光栅结构的SNSPD的相应仿真结果. 可以看到叠加Si补偿层后器件对TM偏振光的吸收效率提高到了和TE偏振光吸收效率相当的水平. 在此基础上, 为了使纳米线对这两种偏振光的吸收效率峰值都位于目标波长处, 在补偿层上表面引入了亚波长光栅结构. 由于亚波长光栅尺寸远小于入射光波长, 根据亚波长光栅的等效介质理论, 其对TE和TM偏振态入射光具有不同的等效折射率[25,26], 即对穿过光栅的透射光具有不同的相位调控作用. 通过合理的设计亚波长光栅尺寸, 可以使纳米线在不同波长下对两种偏振态光子的吸收效率都比较接近, 且都在目标波长处存在吸收峰值. 值得注意的是, 为了保证纳米线的质量, 在制备纳米线时, 通常会对其下方的SiO2进行稍微过度刻蚀, 因此在双层NbN纳米线的边缘出现了一个高度至少为15 nm的台阶. 当在该台阶结构上沉积Si补偿层时, 补偿层的上表面会随着纳米线呈现出周期性的正弦形起伏[27]. 结合该实际工艺结果, 采用正弦形的亚波长光栅结构, 在纳米线尺寸一定时, 通过改变纳米线的过刻深度即可改变光栅的高度, 该光栅可在沉积补偿层时自然形成, 无需单独制备, 简化了工艺流程. 为了确定最佳的补偿层厚度和光栅高度, 使用有限元软件进行仿真优化. 仿真发现光栅高度t1和补偿层厚度t2分别决定了两个吸收峰之间的相对波长差异和吸收峰的绝对位置, 所以分别对每个参数进行优化. 图2实线所示为优化后的器件光吸收效率随波长变化的仿真结果, 此时t1和t2分别为35 nm和165 nm. 和图1(b)中只叠加补偿层的器件仿真结果相比, 引入正弦形光栅后, 由于光栅对不同偏振光的调控效果不同, TE和TM偏振光的器件吸收效率曲线有明显相对移动的效果, 进而使得两种偏振态入射光的吸收效率峰值较好的重合于目标波长1550 nm处. 此外, 可以看出在1400—1700 nm较宽的波长范围内, 这两种偏振态入射光的器件吸收效率的变化趋势较为一致, 吸收效率的差异始终小于8.5%, PER小于1.22, 即在该波长范围内器件始终是偏振不敏感的, 引入的光栅结构增强了器件的偏振不敏感特性. 图 2 引入正弦形光栅的偏振不敏感SNSPD光吸收效率随波长变化的仿真结果 Figure2. Simulated optical absorption as a function of the wavelength of the polarization-insensitive SNSPD with the sinusoidal-shaped grating.
22.2.器件制备 -->
2.2.器件制备
依据上述仿真结果, 在400 μm厚的硅片上制备光敏面直径为18 μm的偏振不敏感SNSPD. 首先在Si衬底上交替沉积13层SiO2/Ta2O5薄膜作为四分之一中心波长布拉格反射镜; 在反射镜上依次沉积6 nm厚的NbN薄膜、3 nm厚的SiO2薄膜和6 nm厚的上层NbN薄膜, 其中NbN薄膜采用室温直流磁控溅射法进行制备, SiO2薄膜则采用等离子体增强化学气相沉积法进行制备; 基于上述薄膜结构采用电子束曝光和反应离子刻蚀法制备了双层纳米线结构, 之后通过紫外曝光和反应离子刻蚀法制备电极微桥, 到此基础的器件结构已经成型, 最后为了实现偏振无关探测的效果, 在上述器件顶部采用热蒸发法沉积了一层Si薄膜, 完成了器件制备. 图3(a)和3(b)分别为器件的光敏面扫描电子显微镜(scanning electron microscope, SEM)图和展示更多细节的纳米线高度放大SEM图, 从图3(b)可知纳米线的宽度和周期分别为65 nm和150 nm. 图3(c)为器件部分结构的透射电子显微镜(transmission electron microscope, TEM)图, 其中沉积的Si材料总厚度为231 nm, Si补偿层的厚度为187 nm. 图3(d)和图3(e)为高度放大的双层纳米线及正弦形光栅的TEM图. 为了能形成所需的光栅结构, 同时也为了保证上层纳米线的质量, 在采用反应离子刻蚀制备纳米线时, 对过刻的深度进行了控制. 从图3(d)和图3(e)可以看到, 纳米线间隔之间的深度约为6.5 nm, 基于该过刻深度制备的光栅高度为22 nm. 因为纳米线较窄且热蒸发沉积Si补偿层时存在一个蒸发角度, 导致光栅的形状偏离对称性的正弦形结构, 这对光栅的调控作用具有一定的影响. 图 3 (a) SNSPD光敏面SEM图; (b)高度放大的双层纳米线SEM图; (c) SNSPD横截面TEM图, Si薄膜总厚度约为231 nm; (d)高度放大的双层纳米线TEM图, 过刻深度约6.5 nm; (e)高度放大的正弦形光栅TEM图, 光栅高度为22 nm Figure3. (a) SEM image of the active area of the SNSPD; (b) magnified SEM image of the the twin-layer nanowires; (c) TEM image of the cross-section of the SNSPD with a 231 nm-thick Si film; (d) magnified TEM image of the twin-layer nanowires with an over-etched depth of 6.5 nm; (e) magnified TEM image of the sinusoidal grating with a height of 22 nm.