1.School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China 2.Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Fund Project:Project supported by the Young Scientists Fund of the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA37), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11904369), and the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology, China (Grant No. 2019ZR07)
Received Date:10 March 2021
Accepted Date:02 April 2021
Available Online:07 June 2021
Published Online:05 September 2021
Abstract:There has been a great interest in quantum metrology (e.g., quantum interferometric radar) due to its applications in sub-Rayleigh ranging and remote sensing. Despite interferometric radar has received vast amount of attentions over the past two decades, very few researches has been conducted on another type of quantum radar: quantum illumination radar, or more precisely quantum target detection. It is, in general, used to interrogate whether the low-reflectivity target in a noisy thermal bath is existed using quantum light. The entanglement properties of its emitted light source give it a unique detection advantage over the classical radar. Entangled coherent state (ECS), as a class of quantum states with high entanglement robustness in noisy environments, has been widely used in several fields of quantum science such as quantum informatics, quantum metrology . In this paper, we investigate the target detection performance of quantum illumination radar based on three different types of ECS states. We employ the two-mode squeezed vacuum state (TMSV) and the coherent state as benchmarks to compare and analyze the relationship between the entanglement strength of the three types of ECS states and their quantum illumination detection performance. We found that the detection performance of the three ECS states is better than that of the coherent state. However, it is inferior to that of the TMSV state when the target is of low reflectivity. The emitted photon number is much smaller than the background noise (we call this as “good” illumination conditions). On the contrary, quantum illumination radar has no obvious advantage over coherent state radar for target detection under other illumination conditions; further, the detection performance of these three types of ECS states is not evidently related to that of the TMSV state and the coherent state. Finally, we reveal that the target detection performance of quantum illumination for the first two types of ECS states can be determined by their entanglement strength under “good” illumination conditions by adjusting the inter-modal phase of these two ECS states while keeping the emitted photon number constant. Under other illumination conditions, there is no evidence to demonstrate the entanglement strength of ECS states being associated with their target detection performance. Keywords:quantum illumination/ entangled coherent states/ entanglement strength
全文HTML
--> --> --> -->
2.1.理论模型
量子照明雷达的主要任务是审查热噪声环境下的低反射率目标物体是否存在, 其等价模型如图1所示. 其中发射光源$ \rho _{\rm {AB}} $为双模纠缠的量子光场, A模作为信号光照向探测目标并对其进行扫描, B模则留在本地作为闲置光与反射回来的A模进行联合测量. 若目标不存在, 则热光场$ \rho _{\rm C} $会直接进入探测器, 此时A模相当于耗散在环境中; 反之, 若目标存在, 则经目标反射的A模会与$ \rho_{\rm C} $在目标物体上进行混合, 随后被探测器接收. 由于上述两种过程会生成不同的接收光场, 因此通过量子态辨识即可判断目标物体是否存在. 图 1 量子照明雷达的物理模型. 发射光源$\rho _{\rm {AB}}$产生双模纠缠的量子态, A模作为信号光用于审查目标物体(图中用“飞机”代替)是否存在. 若目标存在, 热光场$\rho _{\rm C}$与A模在目标物体处进行混合, 随后与留在本地的闲置光B模进行联合测量. 若目标不存在, $\rho _{\rm C}$则直接进入探测器与B模进行联合测量 Figure1. Physical model of quantum illumination radar. The photonic source $\rho_{\rm {AB}}$ generates two-mode entangled quantum states. Mode A is used as a signal mode to interrogate the presence of the target object (illustrated by “an airplane” in figure). If an object is present, the thermal noise $\rho_{\rm C}$ is mixed with mode A at the object and subsequently measured together with the retained-mode B. If no object is present, $\rho_{\rm C}$ will enter the final measurement device directly for joint quantum measurements with mode B.