1.Institute of High Temperature and High Pressure Physics, Southwest Jiaotong University, Chengdu 610031, China 2.Laboratory for Shock Wave Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Fund Project:Project supported by the Science Challenge Project,China (Grant Nos. TZ2016001), the National Key Laboratory of Shock Wave and Detonation Physics, China (Grant No. JCKYS2018212002), and the NSAF(Grant No.U1730248)
Received Date:14 January 2021
Accepted Date:08 April 2021
Available Online:07 June 2021
Published Online:20 August 2021
Abstract:The dynamics of iron under extreme conditions like high temperature and high pressure has been well studied for several decades. But, there have been not many reports about the phase transition kinetics coupled with complicated thermodynamic paths, especially loading-unloading-reloading path, which is closer to the real applications. A three-layer structure impactor with five stages performed in the front-surface experiment is made up to approach the special path. We choose epoxy to be the adhesive as it has low impedance and high strength. Tantalum, the standard material of high impedance which also has single wave structure, is selected for reloading process. The wave profile shows a 3-wave structure in the first unloading period and the inverse phase transition threshold is calculated to be about 11.3 GPa. This onset pressure of reverse phase transition is not consistent with Barker’s result, higher than his result (about 2.5 GPa). By comparing with recalculated result of Jensen’s data, we find that our result is consistent with theirs.In this work the inverse phase transition ends at about 10 GPa, the value from this way which is higher than Barker’s finding, even higher than his result of the threshold pressure of reverse phase transition. And at this state there remains 12%–15% of ε phase. So it cannot be seen as the completed reverse phase transformation. The phase transition onset pressure is 10–12 GPa on the reloading path and it is about 1–2 GPa lower than the first phase transition. By simulating the wave profile, the discrepancy of using different phase transformation characteristic time τ as 30 ns and 5 ns is analyzed. It can be seen that the phase transition rate of reloading is faster than that of the first loading process. These phenomena may be caused by the twins and the dislocations which are produced by the inverse phase transition. Also, as unloading time becomes longer, the mass fraction of ε phase becomes lesser and the onset pressure of α → ε phase transition becomes lower. This because with more ε phases transforming into α phase, more twins and dislocations will be produced in material. Therefore, it brings the lower onset pressure. Keywords:iron/ shock loaded/ kinetics of phase transition/ reload
在中物院流体物理研究所的$ \emptyset $57 mm口径氢氧炮上开展了两发动态实验, 实测弹速shot No.1为(1475 ± 15) m/s, shot No.2为(1521 ± 15) m/s. 图5所示为shot No.2中典型的速度剖面, 对应的含多波结构的波系相互作用过程见图6, 两图中各点与时刻一一对应. 分析可知: 1) A点为撞靶时刻$ {t}_{0} $, 由AB平台段实测界面粒子速度(1015 ± 10)m/s确定出一次冲击压力为(17.6 ± 0.1) GPa. 此刻飞片与窗口碰撞, 在碰撞面上Fe发生α→ε相变, 形成Ep波、$ {P}_{1} $波和$ {P}_{2} $波的多波结构左行传播, 碰撞面上应力波尚未分开, 故记录到粒子速度跃变信号. 2)B点为Fe的Ep波到达Epoxy/Fe界面后的反射稀疏波传递至Fe/LiF窗口界面的时刻, 此时为卸载起始时刻$ {t}_{1} $, B点开始发生准弹性卸载. 3)C点为弹-塑性拐折点, 记为$ {t}_{2} $时刻, $ {P}_{1} $波传到Epoxy/Fe界面, 反射稀疏波$ {R}_{1} $, 右行传播与$ {P}_{2} $波相互作用后到达飞片/窗口界面, 即塑性卸载波到达. 4)D点为逆相变起始点, 记为$ {t}_{3} $时刻, $ {P}_{2} $波左行传播与两道卸载波相互作用后, 于Epoxy/Fe界面反射稀疏波$ {R}_{2} $, $ {R}_{2} $右行传播到达窗口, 界面粒子速度下降加快, 此刻DPS记录到逆相变卸载波到达. 5)F点为再加载起始点, 记为$ {t}_{4} $, $ {P}_{1} $波穿过Epoxy/Fe界面到达Ta/Epoxy界面反射冲击波$ {S}_{3} $(由于粒子速度剖面中再加载弹性波无明显迹象, 故分析中忽略), 右行传播到达飞片/窗口界面, 将Fe样品再加载到达相变临界点G. 6)H点为再加载相变波到达时刻$ {t}_{5} $, $ {P}_{2} $波的反射冲击波 $ {S}_{4} $此刻到达飞片/窗口界面, 将Fe加载到ε的Hugoniot态. 图 5 典型飞片/窗口界面粒子速度剖面(A点为碰撞时刻, B点为稀疏波到达窗口界面, C点为弹塑性卸载拐折点, D点为逆相变起始点, E点为卸载过程终点, F点为二次加载起始点, G为相变临界点, H为再加载P2波到达时刻) Figure5. Particle velocity of impactor/window interface (A is the impact moment, B is the rarefaction wave arrival time, C is the elastoplastic unloading crutch point, D is the start point of reverse phase transition, E is the ending of unloading, F is the start point of reloading, G is the phase transition point of the reloading process, H is the reloading P2 wave arrival time).
图 6 相组织及应力波示意图(字母标识与图5同义) Figure6. Schematic diagram of phase and strain wave(the letters on the time axis have the same meaning with Fig.5).
实验shot No.1及shot No.2中5个不同厚度台阶的粒子速度剖面如图7所示. 不难看出, 两发实验重复性较好, 粒子速度剖面基本展现出相同特征. 在一次冲击及卸载段, 不同厚度台阶粒子速度剖面相同, 再加载起始位置依照实验设计被有效调控, 依次间隔开. 两发实验台阶1的再加载终态压力较其他台阶更低, 因为Ta厚度较薄, Epoxy较厚, 冲击波传播时间较长, 导致来自Ta后界面的稀疏波在尚未达到最高压力即到达飞片/窗口界面, 但这仅影响后续多次冲击过程, 二次加载未受影响, 故表明本实验设计是有效、可靠的. 图 7 (a) shot No.1和(b)shot No.2各台阶对应界面粒子速度历史(1—5分别表示台阶编号) Figure7. The interface particle velocity history of all stages in (a) shot No.1 and (b)shot No.2 (1–5 is the serial number of each stage).
表3实验shot No.2测量及计算结果 Table3.The data of experiment shot No.2.
由于卸载材料的阻抗差异, 本实验中的最低卸载压力为(10.0 ± 0.2) GPa, 远高于文献报道的完全逆相变压力(5.5 GPa), 甚至高于Barker得到的逆相变阈值压力, 可能存在ε相的残余. 对此, 采用唯象的相变动力学模型(Boettger-Wallace模型)[16]对其进行分析. 图8所示为实验shot No.1的4号台阶实测速度剖面与计算结果的比较. 可以看到, 当相变特征时间τ取为30 ns时, 两者符合较好(文献报道中, 相关模型取30 ns与一次冲击实验符合较好[17,18]). 计算结果得到Hugoniot态下ε相质量分数为89%, 处于混合相态, 而卸载最低压力状态下ε相仍残余26%. 图 8 相变特征时间τ取30 ns的模拟结果(字母标识与图5同义) Figure8. Simulation of interface velocity with a characteristic time of 30 ns(the letters have the same meaning with Fig.5).
23.3.再加载α→ε相变特性分析 -->
3.3.再加载α→ε相变特性分析
如图9所示为实验shot No.1中4号台阶对应的再加载段速度剖面, 可见, F点处, 再加载塑性冲击波到达界面, 将Fe带到相变临界点G, 再加载相变波将Fe带到二次冲击Hugoniot态I. 由此获得再加载时, α→ε相变的起始压力为10.9 GPa, 较首次加载相转变起始压力(12.8 GPa)低约2 GPa. 其再加载起始点ε相质量分数为27%. 图中同时给出了计算的速度剖面, 可见, τ = 30 ns的结果在受丰富相变动力学因素影响的GH段和HI段与实验结果表现出明显差异, GH段更缓而HI段更陡. 故将相转变特征时间加快到5 ns, 计算得到波剖面与实验结果更为接近. 上述计算结果表明, 相比于首次冲击, 二次再加载段的相转变速率更快. 分析其原因, 涉及的基本物理图像应该为一次加载-卸载后, 由于α→ε相变及其逆相变的发生, 材料内部的孪晶、缺陷、位错等会显著增加[19,20], 导致再加载阶段的二次相变在这些位置更易于成核, 相变成核能降低, 成核密度增加, 从而降低了相变阈值压力, 同时提高了相转变速率[21]. 图 9 实测再加载段速度剖面与数值模拟的比较(字母标识与图5同义) Figure9. Comparison of the measured particle velocity and simulation (the letters have the same meaning with Fig.5).
表4shot No.1和shot No.2各台阶对应卸载尾段残余ε相质量分数及二次加载相变压力 Table4.The mass fraction of ε phase in the end of unloading process and reload phase transition pressure on each stage.
图 10 二次相变压力与ε相质量分数关系 Figure10. The relation between reloading phase transition pressure and mass fraction of ε phase.