1.State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China 2.School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 91836103, 11974434) and the Natural Science Foundation of Guangdong Province(Grant No. 2020A1515011159)
Received Date:08 March 2021
Accepted Date:15 April 2021
Available Online:07 June 2021
Published Online:20 August 2021
Abstract:Metasurface can precisely control degrees of freedom of the phase, polarization, and amplitude of the incident light field. It provides a new way to develop the next generation of the experimental platform of quantum-state manipulation on-chip, which has important application prospects. This paper proposes a new type of metasurface structure, that is, a metalens composed of silicon grating elements with different duty ratios that can form a focusing ring on the focal plane. The intensity distribution of the ring light field in the focal plane and the focusing characteristics of metalens with different numerical apertures are studied. An optical storage ring of magnesium fluoride (MgF) molecule is constructed by using this kind of metalens focusing ring. The optical potential and dipole force of the MgF molecule in the focused light field are calculated, and the dynamic process of MgF molecule motion in the storage ring is simulated by the Monte-Carlo method. The research results show that for the incident light of 1064-nm radially polarized light, the designed metasurface structure has good focusing characteristics, and the light field intensity of the focusing ring is 55.1 times stronger than that of the incident light. The focal length of the annular light field is 22 μm and the full width at half maximum of the light intensity distribution in the focal plane is 0.8 μm, and the numerical aperture of the hyperlens is 0.69. The maximum dipole potential of MgF molecules in the light field is 32 μK, which can realize the loading of MgF molecules and trap them in the surface storage ring. Keywords:metasurface/ metalens/ optical trapping/ grating
其中, λ, d, neff分别表示入射光波长、光学器件不同位置的厚度及该位置的有效折射率, ?即为该位置对应相位调控大小. 传统的光学器件主要通过改变器件的厚度d来实现对于光程的调控, 传输相位型超构表面近乎二维平面, 为了工艺制造上可行, 一般使器件保持厚度d不变, 通过改变不同位置的有效折射率neff来实现对相位的累积. 而有效折射率neff的改变一般是通过在折射率较低材料的衬底上构建折射率较高材料的微结构, 通过改变不同位置微结构的形状和结构参数来影响共振进行调控的. 图1(a)展示了本文设计的超构表面所应用的周期性结构单元, 其衬底采用SiO2材料, 上面生长Si材料微结构. SiO2衬底的晶格周期宽度设为P, 上面的Si柱宽度设为W, 高度设为H. 改变晶格单元上的Si柱的结构即可调控超表面该位置的有效折射率neff, 进而实现对入射光波前相位的调控. 要实现波导效应, Si柱高度需要满足一定的条件使其对相位的调控覆盖2π的相位范围. 入射光波长为1064 nm, 硅柱高度需要半个波长左右, 经过仿真扫描不同范围的结构参数, 把高度H设置为480 nm. 图1(b)和1(c)给出了晶格宽度P和硅柱宽度W分别与透射率之间的变化规律. 纵坐标为占空比, 定义为硅柱宽度W与晶格宽度P的比值, 即占空比(duty cycle) = W/P. 仿真模拟采用时域有限差分法(finite difference time domain, FDTD)进行扫描. 图 1 (a)单元结构的示意图, Si柱宽度为W, 高度为H, SiO2基底的在周期为P; (b)和(c)分别表示扫描单元衬底周期和占空比得到的相位、透射率二维图; (d)当P = 380 nm时, 相位和透射率分别与占空比之间的关系, 黑色实线为透射率曲线, 红色实线为相位变化曲线 Figure1. (a) Schematic diagram of the unit structure, the width of the Si column is W, the height is H, and the period of the SiO2 substrate is P; (b) and (c) represent the two-dimensional diagram of the phase and transmittance obtained by scanning the period and duty cycle of the unit structure, respectively; (d) when P = 380 nm, the dependence of the phase and transmittance on the duty cycle, respectively, the black solid line is the transmittance curve, and the red solid line is the phase change curve.
超表面光学储存环设计本质上就是在芯片表面形成环形光场, 也就是设计超表面环形透镜, 如图2(a)所示. 光束入射到平面环形透镜, 在其焦平面上形成聚焦的光环. 设计原理是在一条半径方向上的光栅阵列的相位排布能将入射光会聚到焦平面, 这样的一维光栅阵列结构旋转一圈扩展成二维光栅圆环阵列就能将径向入射光在每个半径方向上汇聚至焦平面, 最终形成聚焦光环. 图 2 超表面环形透镜设计原理图 (a)超表面环形光场形成的原理图; (b)半径方向截面光栅排布结构示意图; (c)当焦距f = 22 μm时, 对应的相位分布图, 红色实线为所需相位曲线, 蓝色原点为单元结构实际所需的分立相位值 Figure2. Design principle diagram of the metasurface ring lens: (a) Principle diagram of the formation of the ring light field; (b) layout structure diagram of the cross section of the half grating; (c) corresponding phase distribution for f = 22 μm, the red solid line is the required phase curve, and the blue dot is the discrete phase value required by the unit structure.
其中, α表示分子极化率, ${\varepsilon _0}$为真空介电常数, c为真空中的光速, k为玻尔兹曼常数, ${U_{{\rm{dip}}}}$即为分子在光场中的偶极势, 通常用温度T来表示分子阱深度. 如果研究对象是氟化镁分子, 将超透镜聚焦光环光场处的横截面的光场强度代入, 就可以得到氟化镁分子在光场中的偶极势, 并对偶极势求导就可得到分子在光场中所受的偶极力. MgF分子的平均极化率α = 4.56 × 10–40 Cm2/V, 入射光功率为1 W. MgF分子在聚焦光环光场中所受光学势和偶极力带入电场强度, 如图5所示. 从图5可以看出, MgF分子在光场中的偶极势分布曲线对称, 且最大偶极势约为32 μK, 这足以捕获来自传统多普勒冷却后装载到MOT之后分子温度最低达到几个微开的超冷MgF分子. 相应的偶极力大小和方向随着r变化, 且偶极力最大为8.2 × 10–22 N, 这比MgF分子所受的重力大1.1 × 104倍. 这表明MgF分子所受到的偶极力足够大以平衡分子所受的重力. 图 5 MgF分子在环形聚焦光场中所受光学势和偶极力(见插图) Figure5. Optical potential and dipole force(inset firure) of MgF molecule in ring focused light field.
储存环也是一种环形光学势阱, 然而, 它并不是在空间上一点有最大囚禁势能, 而是在一个圆环上势能都一样大. 分子可以装在这种环形的光学势阱中, 也就是分子的存储环. 为了验证设计的光学储存环的囚禁效果, 我们进行了MgF分子三维Monte-Carlo动力学过程的模拟. 模拟的条件如下: MgF分子束切向呈高斯速度分布, 中心速度为0.2 m/s, 在10 μK玻尔兹曼速度分布之内, 沿储存环切向入射[27,28]. 观测区域为光环上MgF分子束入射点相对180°的小区域. 在储存环上一个很小的区域内考察分子数目随时间演化的关系, 也就是探测区域内分子数目随时间演化的关系, 结果如图6所示. 从图6可以看到, 分子波包在开始时纵坐标峰值为4.3 × 104个, 波包大约1 ms经过一次观测区域, 波包高度逐渐变矮, 在做圆周运动过程中分子波包不断拉长, 大约在5 ms后, 探测区域分子数目趋于稳定, 约为4 × 103, 表明了分子已经扩散到了整个光学储存环空间中. 探测区域内分子数随时间越来越少, 这是因为分子波包具有一定的速度展宽, 在做圆周运动过程中分子波包不断拉长, 最终稀释到整个储存环区域. 图7为单个氟化镁分子在储存环中运动轨迹的三维立体图, 分子在z方向的运动在焦平面附近0.25 μm的范围内; 红色虚线为在xoy平面的运动轨迹投影, 分子在r方向上运动在光束半径附近0.37 μm的范围内. 图 6 MgF分子束在存储环运动若干圈的飞行时间谱. 插图是探测原理示意图 Figure6. Time-of-flight spectrum of MgF molecular beam moving in the storage ring for several cycles. The illustration is the schematic diagram of molecule detection.
图 7 单个MgF分子在表面储存环中运动运动轨迹图, 其中红色虚线为分子在储存环中运动的俯视图, 也就是运动轨迹在xoy平面的投影 Figure7. Motion trajectory of a single MgF molecule in the surface storage ring, in which the red dotted line is the top view of the motion of the molecule in the storage ring, that is, the projection of the motion trajectory on the xoy plane.