Fund Project:Project supported by the National Science Foundation of China (Grant Nos. 12090051, 11834018, 12022409), the CAS Key Research Program of Frontier Sciences, China (Grant No. QYZDJ-SSW-SYS014), and the Youth Innovation Promotion Association of CAS (Grant No. 2017015)
Received Date:14 April 2021
Accepted Date:07 May 2021
Available Online:07 June 2021
Published Online:05 August 2021
Abstract:DNA polymerase is essential for DNA replication and repair. As it only performs the 5′-3′ polymerization, there are two kinds of DNA replication. One of them is called strand-displacement synthesis: DNA polymerase opens the double-strand (ds) DNA to attain the 3′-5′strand (leading strand) and copy this template in a continuous way, and the other is extension synthesis: DNA polymerase copies the newly separated 5′-3′ strand (lagging strand) in a discontinuous manner. The replication complex of T7 phage is an optimal model to investigate the mechanism of replication because it is only constituted by 4 terms of protein which are DNA helicase gp4, DNA polymerase gp5 with co-factor thioredoxin (Trx), and single-strand (ss) DNA-binding protein gp2.5. The replication complex of T7 encounters both strand-displacement synthesis and extension synthesis. Previous researches reported that gp5 can have rapid extension synthesis but lacks the ability to attain strand-displacement synthesis. It also reported that gp4 translocates on ssDNA at a rapid speed but unwinds dsDNA at a very low speed. However, gp5 and gp4 together can attain rapid and processive strand-displacement synthesis. Although extensively studied, this mechanism remains unclear. Here in this work, the dynamic of strand-displacement synthesis by gp5 is investigated with single-molecule F?rster (fluorescence) resonance energy transfer (smFRET). It is found that gp5, without the help of external tension, can open dsDNA but only attain strand-displacement synthesis about 4 base pairs (bp), because its exonuclease activity excises the nascent nucleotides. Therefore gp5 repeats in the synthesis-excision cycle which results in the less production of strand-displacement synthesis. We conduct another control experiment by nano-tensioner, a high precision smFRET setup which can exert a tension on dsDNA, to change the dsDNA regression pressure on gp5. It is observed that reduced dsDNA regression pressure can increase the length of strand-displacement synthesis and reduce the length of excision which indicates that the dsDNA regression pressure can regulate the strand-displacement synthesis of gp5. The further experiment shows that after gp5 and gp4 are assembled into a replisome, it can have a processive strand-displacement synthesis and barely any excision presented. The speed of replisome is a little higher than gp5 alone but much higher than gp4 alone. Additionally, the length of strand-displacement synthesis by replisome is much longer than gp5 alone. Therefore it is indicated that the gp4 can reduce dsDNA regression pressure to enables gp5 to attain processive strand-displacement synthesis. On the other hand, the gp5 facilitates gp4 to unwind the dsDNA. Keywords:T7 DNA polymerase/ T7 DNA helicase/ fluorescence resonance energy transfer/ DNA regression pressure
之前的文献认为持续外切是导致gp5无法链置换的原因[11], 为了直接证明这一点, 本文使用突变了外切活性的exo– gp5作为对照组实验(为了区分, 在后续的结果与讨论部分, 把没有突变的野生型gp5写作exo+ gp5), 并建立了如图1(a)所示的DNA, 其引物链末端标记了Alexa488, 而变性聚丙烯酰胺凝胶(PAGE)被用来分离这些引物链, 最后使用488 nm激光照明就可以特异性地得到引物链的长度, 进而得知DNA聚合酶的链置换情况. 通过对比exo+ gp5和exo– gp5反应产物, 从图1(b)电泳结果的第3道中可以发现在1 min的时间内exo– gp5大部分产物都被全部链置换了, 只有极少数留在原来的位置, 相反的是, 在图1(b)电泳结果的第2道中exo+ gp5只有极少数全部被链置换. 不仅如此, exo+ gp5还外切了一些原有DNA. 通过在图1(b)电泳结果第4道和第5道中展示的延长反应时间后的结果可以发现: 所有exo– gp5都全部合成了, 但是exo+ gp5仍然只有很少的全长延伸产物. 从聚丙烯酰胺凝胶电泳(PAGE)的结果可以得知, exo+ gp5是一个双向的马达, 它既可以链置换也可以外切, 但是由于外切活性的存在导致了其链置换能力很弱, 甚至会把原有的DNA外切的更短. 而如果突变了外切活性, exo– gp5可以独立的打开DNA双链并进行合成. 由于PAGE实验只展示了最后的结果, 无法看到exo+ gp5在链置换与外切中切换的动态过程, 也就无法测量exo+ gp5单次链置换和外切的长度和速度, 所以我们使用了单分子荧光共振能量转移的方法[17,18]来实时观测其转化的方式和原因. 图 1 exo+ gp5和exo– gp5的PAGE实验 (a)电泳实验的DNA, 在引物链5′端标记有Alexa488; (b) 对Alexa488照明得到的结果: 第1个条带为DNA的原始长度, 第2个条带是exo+ gp5合成1 min后的结果, 第3个条带是exo– gp5合成1 min后的结果, 第4个条带是exo+ gp5合成5 min后的结果, 第5个条带是exo– gp5合成5 min后的结果 Figure1. PAGE assays of exo+ gp5 and exo– gp5. (a) Illustration of DNA that used in PAGE assays. Alexa488 is labeled on the 5′ overhand of primer DNA. (b) Results of various condition. The first lane: Original length of the DNA. The second lane: The synthesis-product of exo+ gp5 with 1 minute. The third lane: The synthesis-product of exo– gp5 with 1 minute. The fourth lane: The synthesis-product of exo+ gp5 with 5 minute. The fifth lane: The synthesis-product of exo– gp5 with 5 minute.
23.2.gp5外切与链置换的动态过程 -->
3.2.gp5外切与链置换的动态过程
构建了如图2(a)所示的Y型DNA, 通过标记在DNA不同单链上的Cy3和Cy5来进行测量DNA聚合酶链置换的长度和速度. 当DNA聚合酶打开DNA双链时, Cy3和Cy5的距离会变远, 进而导致能量转移效率FRET降低, 相反当DNA聚合酶回退时, FRET就会增加. 因为FRET和距离的关系为6次方, 所以这种方法可以达到2—3 ?的精度. 图 2 T7 DNA聚合酶gp5不断重复链置换和外切 (a), (b)没有结合辅助因子Trx时聚合酶无法链置换DNA双链; (c), (d)有辅助因子Trx时聚合酶能够部分链置换DNA, 但是会回退; (e), (f)外切活性突变后的gp5不会再外切; (g) exo+ gp5 + Trx实验中合成长度的统计图, 其分布满足单e指数; (h) exo+ gp5 + Trx实验中外切长度的统计图, 其分布满足单e指数 Figure2. T7 DNA polymerase gp5 repeats in synthesis-excision cycle: (a), (b) exo+ gp5 cannot have displacement synthesis without co-factor Trx; (c), (d) gp5 with Trx repeats in synthesis-excision cycle; (e), (f) exo– gp5 attain full-length displacement synthesis without excision; (g) histogram of synthesis processivity from assay of exo+ gp5 + Trx, the distribution is well fit by an exponential; (h) histogram of excision processivity from assay of exo+ gp5+ Trx, the distribution is well fit by an exponential.
通常认为聚合酶的外切功能只会切除错误的核苷酸, 而exo+ gp5只有万分之一的概率插入错误的核苷酸[22], 所以链置换过程中的外切不全是错误导致的. 上面的实验发现外切是要exo+ gp5链置换到一定程度后才会明显出现的, 链置换的过程伴随的是旧双链退火压力. 为了证明是力改变了exo+ gp5的模式, 我们通过图3(a)所示的纳米张力器来研究力对外切的影响. 纳米张力器的原理是通过一段弯曲的双链DNA来对需要链置换的DNA施加张力, 这个张力大概在5—6 pN左右, 而此时根据计算[12] ΔFRET = 0.11为1 nt, 也就对实验精度有进一步的提高. 通过实验发现当张力加到DNA上后, 聚合酶链置换长度和外切长度仍然是单e指数衰减的分布(图3(c)和图3(d)), 经过换算后, 聚合酶的速度稍微有提高到9 nt/s (图3(b)和图4(d)), 而外切的平均长度变为2.9 nt, 比不加力的情况稍微变小, 这意味着外切程度变低了. 另一方面聚合酶的链置换平均长度变为了4.9 nt, 比不加力变长了, 但是这种变长仍然无法完全链置换, 这说明了在6 pN的外力帮助下, gp5仍然无法克服退火压力的影响. 图 3 T7 DNA聚合酶gp5外切的原因是退火压力 (a)纳米张力器示意图; (b) 纳米张力器实验的典型曲线; (c) exo+ gp5 + Trx在受力后合成长度的统计图, 其分布满足单e指数; (d) exo+ gp5 + Trx受力后外切长度的统计图, 其分布满足单e指数 Figure3. DNA regression pressure induced exonuclease activity: (a) Illustration of nanotensionior; (b) typical trace from assay of nanotensionior; (c) histogram of synthesis processivity from assay of exo+ gp5 + Trx with tension, the distribution is well fit by an exponential; (d) histogram of excision processivity from assay of exo+ gp5 + Trx with tension, the distribution is well fit by an exponential.