1.State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University, Shanghai 200042, China 2.Sino-European School of Technology, Shanghai University, Shanghai 200042, China 3.Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
Fund Project:Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1106400), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 52001191), the National Science and Technology Major Project “Aeroengine and Gas Turbine”, China (Grant No. 2017VII00080102), the Shanghai Science and Technology Sailing Program for Young Talents, China (Grant No. 19YF1415900), the Shanghai Rising-Star Program for Young Scientists, China (Grant No. 20QA1403800), and the Shanghai Science and Technology Committee, China (Grant No. 19DZ1100704)
Received Date:06 December 2020
Accepted Date:28 February 2021
Available Online:12 July 2021
Published Online:20 July 2021
Abstract:Metal powders prepared by laminar flow gas atomization have the advantages of small particle size and narrow particle size distribution. At present, the research on laminar flow gas atomization mainly focuses on the influence of process parameters on atomization and powder characteristics, but the atomization mechanism of laminar flow gas atomization is still not clear. In this work, the atomization gas flow, primary and secondary breakup mechanism, and particle morphology of the laminar flow gas atomization process are systematically investigated through numerical simulation and experimental analysis. The characteristics of single-phase atomization gas flow through the De Laval nozzle are studied using the standard k-ε turbulence model. The flow field structure shows a “necklace”-like structure with an expansion wave cluster of oblique shock. The primary and secondary atomization mechanism are investigated using the coupled level-set and volume-of-fluid model, which is validated by solidified fragments and powders after the atomization experiment, and results of the numerical simulation also provide some important advices for the application and specific process of laminar gas atomization technology. The studies indicate that the melts at the periphery of the liquid column are mainly peeled off by filaments or ligaments, which exhibits the small dimension and pressurized melt atomization characteristics. The secondary atomization is mainly based on the disintegration of spherical droplets in the mode of Rayleigh-Taylor instability deformation and sheet-thinning breakup. The simulation results also show that increasing the gas pressure and melt superheat can effectively reduce the probability of irregular powders to occur. The AlSi10Mg powders are obtained under a pressure of 2.0 MPa in the experiment on gas atomization, and the properties of the powders are analyzed. The results show that the powders have good sphericity and flowability, and the proportion of hollow powders is very low. In addition, the mean particle size of the AlSi10Mg powders is 54.3 μm, and the yield of fine powders reaches 48.7%, which is greatly improved compared with the traditional gas atomization processes. Moreover, about 90% of the powders have particle sizes in a range of 30–100 μm, which indicates that a narrow particle size distribution can be obtained by the laminar gas atomization technology. Keywords:laminar flow gas atomization/ primary and secondary atomization/ coupled level-set and volume-of-fluid model/ atomization mechanism
表4二次雾化的数值模拟参数 Table4.Parameters for numerical simulation of the secondary breakup.
-->
4.1.单相雾化气体流场的特征
对单相气体流场进行模拟, 研究了通过De Laval喷嘴的气流的速度分布和气体压力变化特征, 为熔体的破碎过程提供了重要参照. 如图6(a)所示, 矢量图描绘了2.0 MPa雾化气体压力下的气体流场速度分布. 图6(a)右侧为有效雾化区域的放大图, 加速时雾化气体的速度方向与喷嘴的对称轴成一定角度. 如图6(b)所示, 雾化气体流场呈“项链”状结构, 并带有斜激波的膨胀波团, 氩气气流产生的冲击波沿气流轴线方向逐渐减弱. 在De Laval喷嘴的收缩部分, 氩气气流的速度沿气流方向不断增加, 在De Laval喷嘴的扩张部分, 气体发生膨胀, 氩气气流加速到超音速, 气体速度矢量方向偏离轴向. 在达到最大速度后, 气体速度突然下降到最低值, 并在该位置产生一个驻点. 图 6 (a)入口压力为2.0 MPa时流场中的气体速度矢量; (b)入口压力为2.0 MPa时的雾化气体速度等值线 Figure6. (a) Gas velocity vector depicting flow characteristics at pressure inlet of 2.0 MPa; (b) atomizing gas velocity contours at an inlet pressure of 2.0 MPa.
图7(a)显示了在不同雾化压力下, 气体速度沿喷嘴中心线的变化. 雾化气流逐渐加速到超音速峰值, 然后突然下降到谷点. 在谷点之后, 气体流速在波动中逐渐减小. 通过观察不同雾化压力下的雾化气流速度变化曲线, 可以发现初次加速阶段几乎重合. 由此可见, 增大雾化压力并不能显著地提高气流的加速度; 然而, 在较高的雾化气体压力下, 气体的加速距离较长, 并由此获得更好的加速效果, 气体速度峰值也相应升高. 气体压力沿喷嘴中心线的变化如图7(b)所示, 随着雾化压力的增大, 驻点下方一次负压区的范围逐渐向下扩展. 而雾化压力的增大对一次负压区的最小压力值影响不大. 图 7 气体流场特性 (a)不同入口压力下沿喷嘴中心线的气体速度曲线; (b)不同入口压力下沿喷嘴中心线的气体压力曲线 Figure7. Gas flow field characteristics: (a) Gas velocity curve along nozzle center-line under different inlet pressures; (b) gas pressure curve along nozzle center-line under different inlet pressures.
24.2.一次雾化过程及机理 -->
4.2.一次雾化过程及机理
在气体雾化全流程模拟过程中, 一次雾化是连接雾化气体单相流场和二次雾化的中间环节. 研究雾化气流与熔体的相互作用, 特别是熔体通过喷嘴窄喉部分时的速度和形态的变化, 是揭示层流气体雾化机理的关键. 本节对一次雾化气液两相流进行了研究以揭示氩气气流和金属熔体之间的相互作用机制. 如第4.1节所述, 在De Laval喷嘴的扩张部分, 雾化气体迅速减压并加速至超音速状态. 同时, 金属熔体在重力、熔体静压和熔化室内高压气体压力的共同作用下流出导流管, 并与雾化气流发生相互作用. 图8显示了金属熔体与氩气气流共同通过De Laval喷嘴时的形态变化. 根据熔体的形态特征, 将一次雾化过程分为初始阶段和稳定阶段. 如图8(a)所示, 熔体受雾化气流的影响, 在初始阶段向喷嘴的轴向收敛, 熔体流尺寸得到细化. 熔体向下输送过程中, 在喷嘴最窄部分, 首先经历一个短暂的稳定期(0.10至0.12 ms), 随后在继续下落过程中, 熔体流受雾化气流干扰, 出现局部紊乱(如图8(a)中“a-1”处所示), 并且在通过最窄喉部位置, 进入De Laval喷嘴扩张部分之后, 在膨胀加速气体的剪切力作用下发生破碎(如图8(a)中“a-2”处所示). 图 8 De Laval喷嘴的一次雾化过程 (a)初始阶段; (b)稳定阶段 Figure8. Primary atomization process with the De Laval nozzle: (a) Initial period; (b) stable period.
随着熔体的连续流动, 一次雾化进入稳定期, 熔体与气流的相互作用在喷嘴最窄处得到加强. 在轴对称加速气流作用下, 金属熔体快速通过喷嘴最窄部位, 如图8(b)所示, 当金属熔体从导流管流出时, 立即受到高压雾化气体压缩作用而发生变形, 圆柱形熔体的直径逐渐减小. 图9(a)为雾化制粉实验后得到的导流管出口处凝固金属的形态示意图, 可以看到, 金属熔体从内径为2 mm的导流管进入De Laval喷嘴后呈锥形, 且其直径仅有1 mm, 这证实了上述模拟中熔体直径变小的现象, 说明熔体尺寸在雾化前就已得到明显细化, 具有低维度的特征, 有利于熔体在后续过程中破碎成更小尺度的液滴. 图 9 (a) 导流管出口处的凝固熔体; (b) De Laval喷嘴扩张段一次雾化后凝固熔体的形态 Figure9. (a) Solidified melts at the outlet of the delivery tube; (b) morphology of solidified melts after primary atomization at the divergent section of De Laval nozzle.
金属熔体经历一次雾化破碎后, 液柱核心部分的较大液滴在表面张力的作用下迅速形成球形液滴, 随后发生二次雾化[33,34], 而液柱外围的一些不规则熔体则以细丝的形式从外围脱落. 由于动态不稳定性, 熔融液滴在气流中破碎成更小的液滴, 最后凝固成金属粉末. 根据二次雾化理论, 只有在液滴和雾化气流之间的相对速度足够高时, 才能发生有效破碎[35]. 所以在对二次雾化过程进行数值研究之前, 需要先研究不同尺寸液滴的加速行为. 如图12所示, 雾化气流中的液滴加速行为受液滴尺寸的影响. 不同尺寸的液滴在同一雾化气流中加速时, 小液滴比大液滴具有更好的加速效果. 所以, 大液滴与气流的相对速度高于小液滴与气流的相对速度. 图 12 不同尺寸液滴在气流中的速度随飞行时间的变化 Figure12. The velocity of droplets with different sizes in gas flow as a function of flying time.