1.Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China 2.Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081, China 3.Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei 230026, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 42025404, 41704162, 41974186, 41674163, 41904144, 41904143), the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000), the Pre-research Projects on Civil Aerospace Technologies funded by the China National Space Administration (Grant Nos. D020303, D020308, D020104), and the China Postdoctoral Science Foundation (Grant No. 2019M662700)
Received Date:01 December 2020
Accepted Date:27 February 2021
Available Online:09 July 2021
Published Online:20 July 2021
Abstract:Whistler mode very low frequency (VLF) waves from man-made ground-based transmitters in a frequency range of 10–30 kHz are mainly used for submarine communication, and they propagate primarily in the Earth-lower ionosphere waveguide and part of their energy can leak into the inner magnetosphere, leading the energetic electrons in inner radiation belt and slot region to precipitate into atmosphere and then affect the energetic electron dynamics in the near-Earth space. The scattering effects of artificial VLF signals from NWC, NAA and DHO38 transmitters on energetic electrons in Earth’s inner belt and slot region are investigated in detail in this work. Based on the quasi-linear theory and the Full Diffusion Code, we calculate the bounce-average pitch angle diffusion coefficients induced by NWC, NAA and DHO38 VLF transmitter signals, for which the resonance harmonics |N| ≤ 10 are considered, respectively. We further implement the one-dimensional Fokker-Planck diffusion simulations by using the available pitch angle diffusion rates to model the dynamic evolutions of energetic electrons caused by the scattering of the VLF transmitter signals in the inner belt and slot region in 200 d. The simulation results indicate that the NWC VLF transmitter signals are dominant in scattering ~100 keV electrons with pitch angles less than 60° at L ≤ 1.8, and the mainly scattered electron energy values increase with L-shell decreasing , from L = 1.8 to L = 1.5, the mainly scattered electron energy increases from 90–120 keV to 550–650 keV. The NAA and DHO38 VLF transmitter signals are important in scattering < 20 keV electrons with pitch angles less than 70° at higher L-shells (2.2 ≤ L ≤ 2.7), from L = 2.2 to L = 2.7, the mainly scattered electron energy decreases from 10–20 keV to several keV. The VLF transmitter signals are found to have a slight influence on the loss of energetic electrons with pitch angles larger than 80°. Keywords:Earth’s radiation belts/ artificial very low frequency transmitter signals/ wave-particle interactions/ electron pitch angle diffusion coefficient
图2为NWC台站信号在L = 1.5—2.2引起的弹跳平均电子投掷角扩散系数. 图中横坐标为电子的赤道投掷角, 纵坐标为电子能量, 颜色表示电子投掷角扩散系数的大小. 以L = 1.5为例, 扩散系数分为两部分, 其中一部分集中在能量为400—1000 keV, 投掷角为0—57o的范围, 是电子与VLF信号发生回旋共振导致的. 可以发现, 随着能量的增加, 发生回旋共振的投掷角范围也在增加, 而扩散系数峰值在最小共振能量处, 最小共振能量随着投掷角的增加而增大. 另一部分投掷角扩散系数是电子与VLF台站信号发生朗道共振导致的. 相对于回旋共振, 朗道共振导致的扩散系数要弱1—2个数量级. 在L = 1.6—2.2, 投掷角扩散系数的分布特征与L = 1.5的相似, 最小回旋共振能量随着L-shell的增加而降低, 这是因为电子回旋频率随着L-shell的增加而降低[18,19]. 在L = 1.6和L = 1.7的波幅相近, 但L = 1.7处回旋共振(低投掷角)的扩散系数明显增大, 而朗道共振(高投掷角)的扩散系数相对减弱, 这是由于在L = 1.7处导管传播的VLF台站信号比例(75%)高于L = 1.6 (0%), 这些结果说明当波幅相近时, 导管传播的VLF台站信号对电子的散射效应要明显强于非导管传播的VLF台站信号. 在L = 1.7和L = 1.8处, 投掷角扩散系数最大, 约为${10^{ - 8}}~{{\rm{s}}^{ - 1}}$, 而在L ≥ 1.9时, 因为VLF台站信号的波幅随L-shell的增加而减弱, 投掷角扩散系数也相应地随L-shell的增加而减弱. 图 2 NWC台站信号在L = 1.5—2.2导致的电子弹跳平均投掷角扩散系数$\left\langle {{D_{\alpha \alpha }}} \right\rangle $. 图中横坐标为赤道投掷角${\alpha _{{\rm{eq}}}}$, 纵坐标为电子能量${E_{\rm{k}}}$, 颜色表示扩散系数的大小 Figure2. The color-code bounce-averaged pitch angle diffusion coefficients $\left\langle {{D_{\alpha \alpha }}} \right\rangle $ as a function of equatorial pitch angle ${\alpha _{{\rm{eq}}}}$ and electron kinetic energy ${E_{\rm{k}}}$ induced by VLF transmitter signals from NWC at L = 1.5–2.2.
NAA台站信号和DHO38台站信号引起的电子弹跳平均投掷角扩散系数如图3和图4所示. 图的格式与图2相同, 投掷角扩散系数的特征也与图2相似. 由于NAA和DHO38这两个台站的发射频率相近, 在相同的L-shell, 两个台站信号散射的电子能级范围和投掷角范围几乎一致, 随着L-shell的增加, NAA和DHO38台站信号能散射更小能量的电子, 如在L = 2.6处, 扩散系数的峰值在几keV. 随着投掷角的增加, 扩散系数的峰值移向更高能量的电子. 在更高的L-shell, 扩散系数的峰值下移至几百eV能量. 由图1可以看出, NAA和DHO38台站的波幅在L = 2.2—2.7较大, 这些L-shell相应的的扩散系数也较大, 最大值可达到约${10^{ - 7}}~{{\rm{s}}^{ - 1}}$. 对比图1中两个台站信号的幅值, 可以看出在L = 1.7— 2.4处, DHO38台站信号的幅值较大, 相应的DHO38台站信号引起的投掷角扩散系数更大; 而在L = 2.6—2.9处, NAA台站信号幅值更大, 相应的投掷角扩散系数更大. 比较三个台站的扩散系数可以发现, 在相同的L-shell, 最小共振能量随着台站频率的增加而减小, 而投掷角扩散系数的大小, 主要由波幅的大小决定. 图 3 NAA台站信号在L = 1.7—3.0导致的电子弹跳平均投掷角扩散系数. 格式同图2 Figure3. Same as in Fig. 2 except for VLF transmitter signals from NAA at L = 1.7–3.0.
图 4 DHO38台站信号在L = 1.7?2.9导致的电子弹跳平均投掷角扩散系数. 格式同图2 Figure4. Same as in figure 2 except for VLF transmitter signals from DHO38 at L = 1.7?2.9.
23.2.散射效应模拟结果 -->
3.2.散射效应模拟结果
为了进一步研究VLF台站信号对内辐射带和槽区不同投掷角高能电子的散射效应, 计算VLF台站信号导致的电子弹跳平均投掷角扩散系数后, 将其用于求解一维Fokker-Planck扩散方程. 图5是L = 1.8处, 在VLF台站信号的作用下, 电子PSD随时间演化过程的模拟结果. 初始的电子PSD投掷角分布如图5(a1)所示, 图5(b1)—图5(d4)为采用不同VLF台站信号(从左至右分别为NWC, NAA, DHO38台站单独作用和三个台站信号的联合作用), 高能电子PSD演化的分布图(从上至下分别为50, 100和200 d). 图中横坐标为电子赤道投掷角, 纵坐标为电子能量, 颜色表示电子PSD的大小. 图中空白区域为损失锥(电子赤道投掷角小于20o的范围). 从图5可以看出, 在L = 1.8处, NWC台站信号对电子的散射作用最强, 可以使90—120 keV、赤道投掷角小于40o的电子PSD在200 d内减少至少一个数量级; NAA和DHO38台站信号只对80 keV左右、损失锥附近的电子有散射作用. 这与上一节计算的投掷角扩散系数分布是对应的. 三个VLF台站信号联合散射时, 电子PSD下降范围与NWC台站信号单独作用时大体一致. 表明在低L-shell, NWC台站信号对高能电子的散射起主导作用. 图 5 在L = 1.8处, 不同VLF台站信号对电子散射效果的模拟, 从左至右分别为NWC, NAA, DHO38台站信号单独散射和三个台站信号联合散射 (a1)?(d4)不同模拟时间的电子相空间密度分布二维图, 颜色表示电子相空间密度的大小; (e1)?(h4)指定能级电子的相空间密度随时间演化的过程图, 线条颜色表示不同的时间 Figure5. (a1)?(d4) Two dimensional distributions of color-code electron phase space density (PSD) as a function of equatorial pitch angle ${\alpha _{{\rm{eq}}}}$ and electron kinetic energy ${E_{\rm{k}}}$ at the indicated interaction time stamps at L = 1.8 induced by different VLF transmitter signals (from left to right): NWC, NAA, DHO38 individual scattering and combined scattering; (e1)?(h4) temporal evolution of electron PSD distribution as a function of ${\alpha _{{\rm{eq}}}}$ for the indicated four electron energies at the color-coded interaction time stamps.